il
w

Running PACS photometer pipelines

NHSC/PACS Web Tutorials

PACS-201 (for Hipe 11.0.1)
Level 1* to Level 2 processing:
The High-Pass Filter pipeline

Prepared by Roberta Paladini
September 2013

PACS-201 1

NASA Herschel Science
s Center

Structure of this tutorial

» Slide 3 to 35: philosophy and step-by-step walk-through
of the PACS photometer High-Pass Filter pipeline

» Slide 36 to 39: Deglitching

» Slide 40: High-Pass Filter radius

» Slide 41: outpix & pixfrac

> Slide 42: turnaround removals

PACS-201 2

PACS Photometer Pipeline: m
2 main branches

YES
Option 1
NO ////’

\

Option 2

PACS-201 3

nhsc

Sy | The HPF branch is optimal for reducing mini
scan maps or large scan maps where the
focus of the science is on point sources

—— Mini scan map

a single source in the center of
the field

Large scan map ——

multiple sources distributed
in the field

PACS-201 4

\

nhsc> , ;
The High-Pass Filter concept

Effect of Highpass Fitlering (unmasked source)

Main Idea: l.()é_llIIIIIIIIIIIIlIIIII III| IIIIIIIIIIIIIIIIIIIIIII_E
sliding median-filter on 3 E
08 =
individual pixel timelines to 07F E
remove large scale drifts = “F E
g 0sE E
0.32 E
. 02E
Note: When a bright source -
enters the filter box, it alters 00 EEARAR :
. . 0.1 5 —
the estlmate Ofthe medlan and :(illllllollllzloll1|310|1|14|01|||5|0||||610|1|17|01|1|81011119|0|||1“1;0
thus the drift removal Readout Sequence
—— HPF=10 ~——— HPF =30 ~—— HPF=100 ——— HPF=1000

Sources
have to be .
masked ! ‘
Unmasked Highpass Fitlering Masked Highpass Filtering

PACS-201

H G

nhsc

\ NASA Herschel Science

The ipipe script for HPF processing is:
scanmap_Pointsources_PhotProject

HIPE 11.0.1 - /Users/paladini/Documents/PACS/HIPE/hipe_v11.0.1/scripts/pacs/scripts/ipipe/phot/scanmap_pointsources_PhotProject.py

File Edit Run [HIsEIGE Scripts Window Tools Help

¢ 9 P 9 ¢ HIFl »f
“ Editor x PACS» Photometer *» Scan map and minimap " {@EId{[s] >|
a
SPIRE» Spectrometery Chopped point source [eI (XM L Toli o) (el @ scanmap_Pointsources_PhotProject
scanmap p pped p) P)
'J-nlv’c\.l-'l’ \
24 # Bruno Altieri, April 2013 Extended source Madmap» -
25 # Originally for IYAS 2013 Extended source JScanam »
27 # nifty add-ons:
28 # - for faint sources, there is the possibility to Inject the ra, dec of the source
29 # for the mask and the protometry such that the correct source is properly masked
30 # and the aperture is centered at the required position
31 #
32 # The source fitting function is fully described in the simple aperture photometry script
33 # that can be found in the useful scripts
34
35 def mapSourceFitter(map): NOTE 1: in HIPE 11 ipi ri tf r
36 from herschel.share.unit import Angle,FluxDensity,SolidAngle 0 “ ’ 3 Apis Y O”
37 nxpix=map["image"].meta["naxisl"].value the HPF branch (“Deep survey map”,
38 nypix=map["image"].meta["naxis2"].value M=k . 0
39 pixstep=map["image"].meta["cdelt2"].value*3600. Bright point source map” “Extended
40 SolidAngle.PIXEL=SolidAngle.SQUARE_SECONDS_ARC.multiply(pixstep**2,"pix") .
41 CxXpix=nxpix/2.+0.5 source photProject”) have been
42 cypix=nypix/2.+0.5 5 . q q
.3 YPLETYP combined into a single script.
44 med=MEDIAN (map.coverage[map.coverage.where(map.coverage > 0.)])
45 stdev=STDDEV (map.image[map.image.where(map.coverage > med)])
46 cutlevel=1.5 # in sigma
47 threshold=cutlevel*stdev
48 sn=map.image*map.coverage/med
49 sn_nan=IS_NAN(sn)
50 idx=sn_nan.where(sn nan==True) c
52 sn_clean[idx]=0.]
- image cleanwmap. image.copy () 11 has not been updated about this
>4 image_clean[idx]=0. script, and still describes the 3
55 del sn_nan, idx ’
E & o 3 o ”
=0 scripts in “NOTE 1
57 mymodel=Gauss2DRotModel ()
58 mymodel+=BinomialModel (0) =
R | DN

PACS-201

TR

NASA Herschel Science
s Center

Level 1* to Level 2 processing:

NOTE: Starting with HIPE 11, the PACS photometer ipipe
script for the High-Pass Filter branch starts from Level 1

(calibrated cubes) instead of Level O (raw data).

This is because the pipeline is now very stable between
Level 0 and Level 1 and the user does not need to tweak
the processing at the level of raw calibrated data.

PACS-201 7

nhsec

NASA Herschel Science
pasCenter

HPF Pipeline:
Main Concept

The main idea of the HPF pipeline revolves
around generating a mask as accurate as
possible to “protect” the source/s of interest
when the high-pass filtering (which allows the
correction for the noise) is applied.

This operation is done in multiple (3) steps.

PACS-201 8

nhse

NASA Herschel Science
s Center

Structure of the ipipe script:

The script is organized in 3 + 1 major blocks:

» Part 1: 15t mask guess: for each OBSID, a mask is generated by statistically
identifying sources as “peaks” above the (median) background of the scan. HPF is
then applied with this mask

» Part 2: 2" updated mask: all the individual maps are combined together. A mask
is built from these combined maps, and HPF is re-applied to each OBSID (e.g. Level
1) with this improved mask. Deglitching is also applied

» Part 3: 3" updated mask: generated by using direct information on the
coordinates of the source/s of interest. The mask is added to the ones previously
generated, and HPF is re-applied (e.g. to Level 1 data) using this final, global mask

» Photometry: at the end of the script, aperture photometry is performed on the
final map (= THIS PART OF THE SCRIPT IS NOT TREATED IN THIS TUTORIAL)

PACS-201 °

TR

Part 1
(from line 185 to 277)

Generate a mask for each OBSID and use this for 15t pass with HPF

N

the Level 1 data of each OBSID are loaded into HIPE

AN

depending on the brightness of the source, the script decides how to
deglitch the data (see section on Deglitching)

the calTree, which contains all the calibration files, is loaded into HIPE
HPF is run on the Level 1 data without masking the sources

a map is generated from these 15t pass HPF data

AN N N

the high-coverage pixels of this map are used to identify outliers. These
outliers are the “sources” which allow the generation of a mask

AN

this mask is applied to the data before re-running HPF

N

a map from the 2" pass HPF data is created

PACS-201 10

TR

WNASA Herschel Science
s Center

YV VYVYY

At the beginning of Part 1, the user has to set:

target name, e.g. M31: object (line # 143)
OBSID numbers: obsidall (line # 145)
working directory, i.e. directory where to store generated maps: direc (line # 153)

band name, i.e. blue (70 um), green (100 um) or red (160 um): camera (line # 156)
turnaround removals: lowScanSpeed/highScanSpeed or limits (line # 180/181 or
182)

... and then decide:

whether to do (aperture) photometry as well as processing: doPhotometry (line #
166)

use 2" level deglitching or MMT deglitching: iindDeg (line # 167, see slide 36 to 39)
do 2-d gaussian fit to determine source centroid and improve mask: doSourceFit

(line # 168)
get coordinates of the source/s from external file to improve mask: fromAFile (line #

169)
If previous line set to ‘True’, enter filename: tfile (line # 170)

PACS-201 11

S Center

@LE) At this stage, the script starts looping w
over the list of OBSIDs:

1. The Level 1 data of each OBSID, i, in the “obsidall ” list, is loaded
into HIPE. First load the observation context:

' = Console x =

|
HIPE> obs = getObservation(obsidall[i], useHsa=True, instrument='PACS') ‘

2. then extract the Levell:

Syntax for Blue/Red array

"= Console x ', m

|
HIPE> frames=obs.|eve|1.refs["HPPAVGB_"].product.refs[O].product H

I

HPPAVGB/R: Herschel PACS Photometer AVGerage Blue/Red
This is the signal downloaded from the spacecraft after on-board averaging

PACS-201 12

nhse

NASA Herschel Science /4
wa Center

3. Load the Calibration Tree (calTree):

—
! Console x

m)
HIPE> calTree = getCalTree(obs=0bs) H

The Calibration Tree (calTree) contains all the files necessary to process your data

PACS-201 13

NhSe

NASA Herschel Science
S Center

Now that we have the basic pieces, we can get
to the core of Part 1, i.e.:

the generation of the mask for each OBSID

At this stage the mask is created blindly. This means that the
assumption is that one does not know the location (coordinates) of
the sources, and these have to be identified as “peaks” above the
median background.

PACS-201 14

NASA Herschel Science '

Let’s see how this works:

4. First apply high-pass filtering without a mask
5. Then create a preliminary map

6.next slide
see slide 40

= Console x\ /

HIPE> frames = highpassFilter(frames, hpfwidth, interpolatedMaskedValues=True)

HIPE>

HIPE> map1 = photProject(frames, calTree = calTree, calibration=True, outputPixelsize=outpixsz)

N

see slide 41

NOTE: This map is NOT good for photometry:
It must be used *only* for identifying sources

PACS-201 15

NASA Herschel Science
s Center

6. Identify the region of the map with high coverage (i.e. coverage > “med”)
7. Use this region to estimate the signal standard deviation of the map (stdev)
8. Set a threshold (i.e. cutlevel) above which map outliers are identified

9.next slide

| &l Console x

HIPE > med=STDDEV(mapl.coverage[mapl.coverage.where(mapl.coverage >0.)])
HIPE > index = map1l.image.where((mapl.coverage > med) & (ABS(mapl.image) < 1le-2))
HIPE > signal_stdev=STDDEV(map1l.image[index])

HIPE > cutlevel=3.0

HIPE > threshold=cutlevel*signal_stdev

PACS-201 16

NASA Herschel Science
s Center

9. Mask everything above the threshold - these are the “sources”
10. Save the mask in a .fits file

11. Mask in the timeline (i.e. in each frame, see slide 10) all readouts
at the same coordinates of the map pixels with signal above the threshold

The frames are saved in standard fits format. The saved file can be read back into HIPE:
HIPE> frames = simpleFitsReader(maskfile)

' Console x

[]

HIPE > mask=mapl.copy()
HIPE > mask.image[maskiimage.where(mapl.image > threshold)] = 1.0

HIPE > mask.image[rhask.image.where(mapl.image < threshold)] = 0.0

HIPE > simpleFitsWriter(mask,maskfile)

HIPE > frames = photReadMaskFromlmage(frames, si=mask,maskname="HighpassMask”, extendedMasking=True,

calTree=calTree) \

This is how a mask is “attached” to
the Level 1 frames !

PACS-201 17

NASA Herschel Science /4
S Center

9. now that you have a mask, re-run high-pass filtering applying it
10. create map from high-pass filtered data
11. save map in a .fits file
see slide 40

HIPE > frames = highpassFilter(frames,hpfradius,maskname="HighpassMask", interpolateMaskedValues=True)

HIPE >
HIPE > map2 = photProject(frames, calibration=True,outputPixelsize=outpixsz,calTree=calTree)

HIPE > simpleFitsWriter(map2, outfile)

[l Console x \"x / (0

see slide 41

Map from an individual
OBSID (e.g. map2)

PACS-201 18

NASA Herschel Science
s Center

Part 2
(from line 282 to 365)

Derive a mask from combined maps and then step back, i.e. apply
the newly improved mask to do HPF on individual OBSIDs

v the maps generated in Part 1 are read-in, co-added

v the new combined map is used to generate an improved mask, following
the same procedure as in Part 1 for the individual OBSID maps: the high-
coverage pixels of this map are used to identify outliers, an these outliers
are the “sources” which allow the generation of a mask

v with this improved mask, step back to Level 1 data of each OBSID: apply
HPF using the new mask, and create the map

v co-add again the individual maps

PACS-201 19

NhSC™
1. First, loop over the OBSIDs and co-add them:

NOTE: in Jython the loop is

denoted with an indentation
"l Console x / |'-

I
oy

HIPE >f%’ange(len(obsidall))
HIPE >

ima=simpleFitsReader(file=direc+'Map_'+camera+'_'+str(obsidall[i])+'_maskedHPF.fits')

HIPE > images.add(ima)

HIPE > mosaicl=MosaicTask()(images=images,oversample=0)

Map from combined
OBSIDs (e.g. mosaicl)

PACS-201 20

NhSC

NASA Herschel Science
— HI

2. Then generate a mask using the combined map. ”
The procedure is the same as in Part 1 (slide # 15 to 17):

- ldentify the region of the map with high coverage (i.e. coverage > “med”)
— Use this region to estimate the signal standard deviation of the map (stdev)
— Set a threshold (i.e. cutlevel) above which map outliers are identified

....anhd then:

- Mask everything above the threshold - these are the “sources”

— Save the mask in a .fits file

- Mask in the timeline all readouts at the same coordinates of the map pixels
with signal above the threshold

Note: in Part 2, “cutlevel” is set to 2.0 instead of 3.0 as in Part 1

PACS-201 21

nhsc™

NASA Herschel Science
8"(&!

Mask from Part 1: Updated Mask from Part 2:
One for each OBSID combined OBSIDs

source

PACS-201

nhse

NASA Herschel Science /4

e 3. Step back to Level 1 data for each OBSID and
apply HPF with improved mask

El Console X '
HIPE > foriin range(len(obsidall))

HIPE >

HIPE > mask =simpleFitsReader(direc+object+'Mask'+camera+'.fits')

HIPE > frames = photReadMaskFromIimage(frames, si=mask, maskname="HighpassMask”, extendedMasking=True,
calTree =calTree)

HIPE > frames = highpassFilter(frames,hpfradius,maskname="HighpassMask",

interpolateMaskedValues=True)

HIPE> ...
HIPE > map3 = photProject(frames, calibration=True,outputPixelsize=outpixsz,

calTree=calTree,pixfrac=pixfrac)

Map from individual OBSID —
2" pass (e.g. map3)

PACS-201

23

.
|>l|nJ

nhsc

_NASA Herschel Science /4
S Center

4. Now co-add the 2" pass HPF maps from
individual OBSIDs

] Console x |

HIPE >images=ArraylList()
HIPE > for i in range(len(obsidall)):
HIPE > ...

HIPE > images.add(ima)

HIPE > mosaic2=MosaicTask()(images=images,oversample=0)

Map from combined OBSIDs
from 29 pass (e.g. mosaic2)

PACS-201

24

|5
=1

NhSC

e Part 3
(from line 375 to 479)

After generating a “blind” mask in Part 1 and 2, the user can now try to
improve on that mask by using the information on the location of the
sources (e.g. coordinates), if this information is available.

v" To use the known coordinates of the sources, the script provides two
options:

A. The user input these coordinates (e.g. from a file) and a 2-d gaussian
procedure is used to “refine” the input source/s coordinates. The fitted
centroids are then used to generate a mask;

B. The input coordinates (from a file or from the metadata) are used to

directly generate a mask at these locations;

25

nhsc

NASA Herschel Science

Option A:
2-d gaussian fitting

To use this option, doSourceFit (line # 168) has to be set to True

Read-in the file with the input coordinates

v
v For each input source, create a postage stamp using a given “cropsize”
v do a 2-d gaussian fit on each postage stamp

v

use fitted “rasource” and “decsource” to generate a mask

NOTE: option A also includes the alternative case (line # 397 to 399) in which the user, with
no a-priori information on the location of the sources (i.e. no input file), performs a “blind”
2-d gaussian image on the map (e.g. mosaic2, see slide #) and uses the fitted centroids to
generate a mask.

PACS-201 26

Option A: In practice..

The “readTargetList” function is defined at the

1. Input source file: /7 beginning of the script (line # 104 to 134)
"= console x‘

i [=a]
‘ HIPE> tlist,ralist,declist=readTargetList(tfile) H

2. For each source, convert ra/dec into pixel coordinates:

' =] Console x (o

‘ HIPE> pixcoor = mosaic2.wcs.getPixelCoordinates(ralist[0],declist[0])

\ Note: the current script has a bug, as

only the first source is considered. A loop
on the sources is missing !

3. Define boundaries of postage stamp in pixel coordinates: r1, r2, c1, c2.
The postage stamp size is defined by “cropsize” (default = 20 pixels), e.g:

| =] Console x (—o)

|
- HIPE> r1 = int(pixcoor[0]-cropsize/2.) H

PACS-201 27

NASA Herschel Science /4
s Center

4. Create postage stamp:

"El Console x-k"-.\ e

HIPE >cmap = crop(image=mosaic2,rowl=int(pixcoor[0]-cropsize/2.), \
row2=int(pixcoor[0]+cropsize/2.), \
columnl=int(pixcoor[1]-cropsize/2.) \
column2=int(pixcoor[1]+cropsize/2.))

5. For each postage stamp, do a 2-d gaussian fit:

[= Console x ™ —

|
‘ HIPE> sfit = mapSourceFitter(cmap) w

\ The “mapSourceFitter” function is defined at
the beginning of the script (line # 35 to 102)

6. Get the coordinates centroid, ra/dec, from the fit:

=l Console X * —

|
HIPE > rasource = Doubleld([sfit["Parameters"].data[1]]) ‘

HIPE > decsource = Doubleld([sfit["Parameters"].data[2]])

PACS-201 28

-\NASA'le's!nsgnce) w
S Center Optlon B:

Source coordinates from file or metadata

In this case, doSourceFit (line # 168) has to be set to False

Then:

v" If input catalog file is provided, read-in the file with the input coordinates
v’ use the input coordinates to generate a mask

Or:

v’ get source/s coordinates from metadata
v use these coordinates to generate a mask

PACS-201 29

Option B: in practice..

—> If input catalog file is available:

' Console x (<D

HIPE> tlist,ralist,declist=readTargetList(tfile)

HIPE > rasource = Doubleld(ralist)

HIPE > decsource = Doubleld(declist)

—> alternatively, if source/s coordinates are read-in from metadata:

" Console x (-0

HIPE > rasource = Doubleld([obs.meta['ra'].value])

HIPE > decsource = Doubleld([obs.meta['dec'].value])

PACS-201 30

nhSe
In common to option A and B:

- With the source/s coordinates (“rasource”, “decsource”) — either from 2-d
gaussian fit/s or direct input/s from catalog/metadata — the new mask can now be
generated:

' Console x (3

HIPE > mfc = MaskFromCatalogueTask()
HIPE > mask1 = mask.copy()

HIPE > cmap = mfc(maskl,rasource,decsource,Doubleld(len(rasource),radius),copy=1)

PACS-201 31

nhsc™

NASA Herschel Science
8"(&!

Mask from Part 1: Updated Mask from Part 2: Updated Mask from Part 3:
from each OBSID from combined OBSIDs From known source/s coords.

PACS-201

nhsc

NASA Herschel Science
S Center

- Now step back and apply this new mask (improved version of the
mask from Part 1, 2 and 3) to do HPF on the Level 1 data of each OBSID:

= Console X | n

HIPE > for i in range(len(obsidall)):
HIPE >

HIPE > frames = photReadMaskFromIimage(frames, si=cmap, maskname="HighpassMask", extendedMasking=True,calTree
= calTree)

HIPE > frames = highpassFilter(frames,hpfradius,maskname="HighpassMask",interpolateMaskedValues=True)

HIPE >

HIPE> map4 = photProject(frames, calibration=True,outputPixelsize=outpixsz,
calTree=calTree,pixfrac=pixfrac)

Map from individual OBSID —
3d pass (e.g. map4)

PACS-201 ’ 33

nhse

NASA Herschel Science /4
S Center

- now co-add the 3 pass HPF maps from
individual OBSIDs: this is the FINAL map !

T Console X |

HIPE >images=ArrayList()
HIPE > for i in range(len(obsidall)):
HIPE > ...

HIPE > images.add(ima)

HIPE > mosaic3=MosaicTask()(images=images,oversample=0)

Map from combined OBSIDs -
3" pass (e.g. mosaic3)

PACS-201

34

s| o)

:N| Iqﬁ CPAC

This concludes the walk through the
PACS photometer HPF pipeline !

PACS-201 35

£~

nhsc

NASA Herschel Science

] Deglitching

(more information in tutorial # 402)

o

= At the beginning of the script (line # 167), the user has to set the switch
iindDeg to either True or False;

= this means that the user has to decide whether to use 2" Level
Deglitching or MMT Deglitching;

= The default is to use MMT Deglitching (= iindDeg = False)

= Note that, in the script, deglitching is performed in Part 2 (line # 326 to
333)

What are 2" Level Deglitching and MMT Deglitching?

PACS-201 36

nhsc

WNASA Herschel Science
S Center

There are two non-exclusive deglitching algorithms available in HIPE:
Spatial (DEFAULT) and/or temporal deglitching

Spatial (2" Level Deglitching) approach identifies glitches by exploiting spatial redundancy

Reliable even in the presence of strong signal gradients, e.g. with bright compact

- sources or extended emission
g The algorithm requires a high level of spatial redundancy

Temporal (MMT) approach identifies glitches from individual pixel timelines

o Excellent performance for deep observations of faint sources

Bright sources are erroneously flagged as glitches since they “look” like glitches

[= when scanned

PACS-201 37

nhse

NASA Herschel Science '
S Center

MMT Deglitching

For faint sources, or not enough redundancy, we deglitch by applying the
MMT deglitching task:

' = Console x '

HIPE> frames = photMMTDeglitching(frames, incr_fact=2, mmt_mode="'multiply', scales=3,
' nsigma=5)

The set of parameters provided above works well with most observations

PACS-201 38

NASA Herschel Science
s Center

2"d Level Deglitching

For relatively bright sources and high redundancy, we deglitch by applying
the 2" Level Deglitching task:

] Console X A:

HIPE > s = Sigclip(10, 30) A

HIPE > s.behavior = Sigclip.CLIP
HIPE > s.outliers = Sigclip.BOTH_OUTLIERS

HIPE > s.mode = Sigclip.MEDIAN \

HIPE > if (iindDeg):

HIPE > mapDeglitch(frames, algo =5, deglitchvector="timeordered", calTree=calTree)

v
Outliers are detected with a sigma-clipping algorithm and flagged as

glitches. Both positive and negative outliers are detev;ted. By
default, outliers are detected with respect to the median.

PACS-201 39

qnsc High-Pass Filter Radius:
hpfradius

S Center

The default values are:

HIPE> if camera=='blue':

Averagely bright source |:> HIPE > hpfradius=15

HIPE > elif camera=="red":
HIPE > hpfradius=25 These values (units—=> readouts)

allow removal of 1/f noise while

preserving as much as possible
p— the flux in the wings of the PSF
(Point Spread Function)

HIPE> if camera=='blue':

Bricht source |:> HIPE > hpfradius=25
& HIPE > elif camera=='red":

HIPE > hpfradius=40

NOTE: the values above are optimized for point-sources. If the source of interest is
slightly extended (a few times the fwhm), the use of larger “hpfradius” is recommended.

PACS-201 40

~.an!l!hsgnce , Ng i‘f
— Making the map:

outpixsz & pixfrac

The photProject task performs a simple co-addition of the images using the
drizzle method (Fruchter and Hook, 2002, PASP, 114, 144). The key parameters
are the output pixel size and the drop size (pixfrac). A small pixfrac value can
help to reduce the correlated noise due to the projection.

' =l Console x _—

HIPE > map=photProject(frames, outputPixelsize=outpixsz, calTree=calTree, pixfrac=pixfrac) H

DEFAULT VALUES:

HIPE > If camera == ‘blue’:
HIPE > outpixsz=1.2
HIPE > elif camera ==‘red’:
HIPE > outpixsz = 2.4.

HIPE > pixfrac = 0.1

PACS-201 41

nhse

NASA Herschel Science /4

Turnaround removal

NOTE: in the script, the frames corresponding to the telescope turnaround are removed each
time before creating the map. Turnaround frames are characterized by much lower coverage
(hence sensitivity) then normal science frames.

& Cross-scan distance

X l

~

turnaround

Scan leg length

| &l Console x —

HIPE > frames = filterOnScanSpeed(frames,limit=limits)

™~

The parameter “limit” is set at the beginning
Turnaround frames are executed at SI.th.e Sinﬁ;[,,(lme # 1.82)' ll the f
different scan speed than normal .|m|ts - means.oren'.\ove all the frames
Sy — Wl.th a scan speed 10% higher/lower than
science frames scan speed.

PACS-201 Tz

Thank you !

PACS-201 43

