i
%

Running PACS photometer pipelines

NHSC/PACS Web Tutorials

PACS-201 (for Hipe 12.0)
Level 1* to Level 2 processing:
The High-Pass Filter pipeline

Prepared by Roberta Paladini
April 2014

PACS-201 1

NhSC

NOTE: the scanmap_Pointsources Photproject
ipipe script has been extensively cleaned up in
HIPE 12 with respect to the same script in HIPE
11. In addition some bugs have been found and

fixed.

Therefore, we highly recommend using version
12.0 rather than previous versions of this script.

PACS-201 2

Illl \

NASA Herschel Science
s Center

Outline of the tutorial

» Slide 4 to 37: philosophy and walk-through the PACS
photometer High-Pass Filter pipeline

» Slide 38 and 39: Deglitching

» Slide 40: High-Pass Filter radius

» Slide 41: outpix & pixfrac

> Slide 42: turnaround removals

PACS-201 3

PACS Photometer Pipeline: m
2 main branches

YES
Option 1
NO ////’

\

Option 2

PACS-201 4

nhsc

Y | The HPF branch is optimal for reducing mini
scan maps or large scan maps where the
focus of the science is on point sources

—— Mini scan map

a single source in the center of
the field

Large scan map ——

multiple sources distributed
in the field

PACS-201 5

nhsc>

NnSﬂHel[':sCCI:l!lélrSr;imlcﬂ The High-PaSS Filter concept

Effect of Highpass Fitlering (unmasked source)

Main Idea: l.OilllII|IIII|IIII|IIII| IIII III|IIII|IIIIIIIII|IIII_§
sliding median-filter on 3 E
08 =
individual pixel timelines to 07E E
remove large scale drifts o °F E
g osE E
0.32 3

. 02E

Note: When a bright source :
enters the filter box, it alters 00 EEAMAW :
the estimate Ofthe median and -O'lill1|110|1|12|0||||3i)||1|410|1|15|01|1|6|0||||7|0|1118|01|1|910|111;1;0

thus the drift removal Readout Sequence

— HPF=10 ——— HPF =30 ~—— HPF=100 ——— HPF=1000

Sources
have to be .
masked ! ‘
Unmasked Highpass Fitlering Masked Highpass Filtering

PACS-201

nhse

NASA Herschel Science
Center

The ipipe script for HPF processing is:
scanmap_Pointsources_PhotProject

®00 HIPE 12.0.0 - /Users/paladini/Documents/PACS/HIPE/hipe_v12.0.0/scripts/pacs/scripts/ipipe/phot/scanmap_pointsources_PhotProject.py
File Edit Run Pipelines Scripts Window Tools Help
e & p 5 2 bp Q@ m K
i »
7 Editor x SP scripts .] : . —
Point sources PhotProject » @ scanmap_Pointsources_PhotProject
 *scanmap_p..rojectpy X T Extended source Madmap»
10 # Extended source JScanam » H
2 # This file Is part of Herschel Common Science SystTem [HLSS]-.
3 # Copyright 2001-2013 Herschel Science Ground Segment Consortium
4 #
5 # HCSS is free software: you can redistribute it and/or modify
6 # 1t under the terms of the GNU Lesser General Public License as
7 # published by the Free Software Foundation, either version 3 of
8 # the License, or (at your option) any later version.
9 #
10 # HCSS is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GM/ Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNMU Lesser General
16 # Public License along with HCSS.
17 # If not, see <http://www.gnu.org/licenses/>.
18 #
19 #
20 # This ipipe script processes scan map and mini-scan map observations
21 # containing mostly point-like or relatively small extended sources.
22 # starting from Level 1 (calibrated data cubes in Jy/detector pixel)
23 # and combinining several (crossed) observations.
24 # This script makes uses of an iterative high-pass filtering of the -

-

= Console x

0K, No update!
HIPE>

GRGEEGT W= king for updated PACS Calibration.. 1 162 of 11744 MB | T

PACS-201

TR

NASA Herschel Science
Center

Level 1* to Level 2 processing:

NOTE: Starting with HIPE 11, the PACS photometer ipipe
script for the High-Pass Filter branch starts from Level 1

(calibrated cubes) instead of Level O (raw data).

This is because the pipeline is now very stable between
Level 0 and Level 1 and the user does not need to tweak
the processing at the level of raw calibrated data.

PACS-201 8

TR

NASA Herschel Science
c eeeee

HPF Pipeline:
Main Concept

The main idea of the HPF pipeline revolves
around generating a mask as accurate as
possible to “protect” the source/s of interest
when the high-pass filtering (which allows the
removal of the noise) is applied.

This operation is done in multiple (3) steps.

PACS-201 9

nhsc

JNASA Herschel Science

Structure of the ipipe script:

The script is organized in 3 + 1 major blocks:

> Partl

— 15t pass: for each OBSID, a mask is generated by statistically identifying sources as “peaks”
above the (median) background of the scan. HPF is then applied with this mask

= 2" pass: all the individual maps are combined together. A mask is built from these
combined maps

> Part2

HPF is re-applied to each OBSID (e.g. Level 1) with this improved mask. Deglitching is also
applied

> Part3

the mask generated in Part 1 and 2 is updated by using direct information on the coordinates
of the source/s of interest. The mask is added to the ones previously generated, and HPF is
re-applied (e.g. to Level 1 data) using this final, global mask

> Photometry: at the end of the script, aperture photometry is performed on the final map
(= THIS PART OF THE SCRIPT IS NOT TREATED IN THIS TUTORIAL)

PACS-201 10

nhsc™

Part 1 — 1%t pass
(from line 111 to 244)

Generate a mask for each OBSID and use this for 1t pass with HPF

the Level 1 data of each OBSID are loaded into HIPE
the calTree, which contains all the calibration files, is loaded into HIPE

HPF is run on the Level 1 data without masking the sources

a map is generated from these 15t pass HPF data

DN NI N RN

the high-coverage pixels of this map are used to identify outliers. These
outliers are the “sources” which allow the generation of a mask

N

this mask is applied to the data before re-running HPF

AN

a map from the 2"d pass HPF data is created

PACS-201 11

nhsc™

WNASA Herschel Science
S Center

YVVVVY

At the beginning of Part 1, the user has to set:

target name, e.g. M31: object (line # 52)

OBSID numbers: obsids (line # 54)

band name, i.e. blue (70 um), green (100 um) or red (160 um): camera (line # 57)
working directory, i.e. directory where to store generated maps: direc (line # 70)
prefix (including target name and camera) of files to generate: fileroot (line # 71)
turnaround removals: lowScanSpeed/highScanSpeed or limits (line # 90, 91 and 92)

... and then decide:

Improve on 2" |evel deglitching: dolindLevelDeg (line # 78, see slide 38/39)
whether to do (aperture) photometry as well as processing: doPhotometry (line #
79)

do 2-d gaussian fit to determine source centroid and improve mask: doSourceFit

(line # 80)
get coordinates of the source/s from external file to improve mask: fromAFile (line #

82)
If previous line set to ‘True’, enter filename: tfile (line # 83)

PACS-201 12

At this stage, the script starts looping w

over the list of OBSIDs:

1. The Level 1 data of each OBSID, j, in the “obsids ” list, is loaded
into HIPE. First load the observation context:

" El Console X [=iENl

HIPE> obs.append(getObservation(obsids[i], useHsa=True, instrument="PACS"))

2. Load the Calibration Tree (calTree):

' & Console x ', —

HIPE> calTree.append(getCalTree(obs=0bs][i])) ﬂ

The Calibration Tree (calTree) contains all the files necessary to process your data

PACS-201 13

nhsc

NASA Herschel Science /4
— HA

3. then extract the Levell:
Syntax for Blue/Red array

' Console x ', —

|
HIPE> frames=obs]i].levell.refs|"HPPAVGB"].product.refs[0].product H

I

HPPAVGB/R: Herschel PACS Photometer AVGerage Blue/Red
This is the signal downloaded from the spacecraft after on-board averaging

PACS-201 14

TR

NASA Herschel Science
s Center

Now that we have the basic pieces, we can get
to the core of Part 1, i.e.:

the generation of the mask for each OBSID

At this stage the mask is created blindly. This means that the
assumption is that one does not know the location (coordinates) of
the sources, and these have to be identified as “peaks” above the
median background.

PACS-201 15

NASA Herschel Science '

Let’s see how this works:

4. First apply high-pass filtering without a mask
5. Then create a preliminary map
6.next slide

For more information on “hpfradius” see slide # 40

' &l Console x* /

HIPE> frames = highpassFilter(frames, hpfradius, interpolatedMaskedValues=True)

HIPE>

HIPE> map, mi = photProject(frames, pixfrac=pixfrac, outputPixelsize=outpixsz, calTree=calTree[i])

\

NOTE: Thigymap is NOT good for photometry:
It must be used *only* for identifying sources

For more information on “pixfrac” and
“outputPixelsize” see slide # 41

PACS-201 16

NASA Herschel Science '
— HA

6. Identify the region of the map with high coverage (i.e. coverage > “med”)
7. Use this region to estimate the signal standard deviation of the map (stdev)
8. Set a threshold (i.e. 3.0) above which map outliers are identified

9.next slide

' & Console x

HIPE > med=MEDIAN(map.coverage[map.coverage.where(map.coverage > 0.)])
HIPE > index = map.image.where((mapl.coverage > med) & (ABS(map.image) < 1e-2))

HIPE > signal_stdev=STDDEV(map.image[index])

HIPE > threshold=3.0*signal_stdev

PACS-201 17

NASA Herschel Science
s Center

9. Mask everything above the threshold - these are the “sources”
10. Save the mask in a .fits file
11. Mask in the timeline all readouts at the same coordinates of the map pixels
with signal above the threshold

The frames are saved in standard fits format. The saved file can be read back into HIPE:
HIPE> frames = simpleFitsReader(maskfile)

"l Console x
HIPE > mask=map.copy()

> |

HIPE > mask.image[mask.imagesvhere(map.image > threshold)] = 1.0

HIPE > mask.image[mask.indage.where(map.image < threshold)] = 0.0

HIPE > mask.image[magk.image.where(map.coverage < 0.5*med)] = 0.0

HIPE > simpleFitsWriter(mask, fileRoot + " _" + str(obsids[i]) + "_mask_firstStep.fits")

HIPE > frames, outMask = photReadMaskFromlmage(frames, si=mask,maskname="HighpassMask”,

extendedMaskWITree:caITree[i])

This is how a mask i
NOTE: since HIPE 12.0, every task having more than one . = ; d?' : . b |
output has this syntax. In this case, the two ouputs of the attached” to the Leve
task are the updated frames and the mask 1 frames !

PACS-201 18

NASA Herschel Science /4
S Center

9. now that you have a mask, re-run high-pass filtering with it
10. create map from high-pass filtered data
11. save map in a .fits file

,. :
= Console x|

HIPE > frames = highpassFilter(frames,hpfradius,maskname="HighpassMask", interpolateMaskedValues=True)

HIPE > map, mi = photProject(frames,pixfrac=pixfrac,outputPixelsize=outpixsz,calTree=calTreel[i])

HIPE > simpieFitsWriter(map, fileRoot +"_" + str(obsids[i]) + "_map_firstStep.fits")

Map from an
individual OBSID — 1t pass

PACS-201 19

NASA Herschel Science
s Center

Part 1 — 2"d pass w

(from line 213 to 244)

Derive a mask from the combined maps

v' the maps generated in Part 1 are read-in, co-added

v the new combined map is used to generate an improved mask, following
the same procedure as in Part 1 for the individual OBSID maps: the high-
coverage pixels of this map are used to identify outliers, an these outliers
are the “sources” which allow the generation of a mask

PACS-201 20

NASA Herschel Science /4

— 1. First, loop over the OBSIDs and co-add them:

NOTE: in Jython the loop is

denoted with an indentation
' El Console x / —

|»|O

HIPE > for/'/'nrange(len(obsids))
HIPE >

ima=simpleFitsReader(file=fileRoot + " " + str(obsids[0]) + "_map_firstStep.fits")
HIPE > images.add(ima)

HIPE > mosaic=MosaicTask()(images=images, oversample=0)

Map from
combined OBSIDs

PACS-201 21

NhsSc™
NASA Herschel Science
Saascenter

2. Then generate a mask using the combined map.
The procedure is the same as in Part 1 (slide # 17 to 19).
These steps are not repeated in the tutorial, but in summary:

N%iﬁiii

- ldentify the region of the map with high coverage (i.e. coverage > “med”)
- Use this region to estimate the signal standard deviation of the map (stdev)
— Set a threshold above which map outliers are identified

....and then:

- Mask everything above the threshold - these are the “sources”

— Save the mask in a .fits file

- Mask in the timeline all readouts at the same coordinates of the map pixels
with signal above the threshold

Note: in Part 2, the threshold is set to 2.0 instead of 3.0 as in Part 1

PACS-201 22

" nhsc
N\ N“A Hersel:l:ltill'SCIence
Mask from Part 1. Updated Mask from Part 2:

One for each OBSID combined OBSIDs

source

PACS-201

NASA Herschel Science
I

Part 2
(from line 251 to 310)

Now step back, i.e. apply the newly improved mask to do HPF on
individual OBSIDs

v' With the improved mask derived from the combined maps, step back to
Level 1 data of each OBSID: apply HPF using the new mask, and create the
map

v' co-add again the individual maps

PACS-201 24

nhsc

NASA Herschel Science /4

e 1. Step back to Level 1 data for each OBSID and
apply HPF with improved mask

El Console X ', (
HIPE > foriin range(len(obsids))

1
|>J|n_,‘

HIPE >
HIPE > frames, outMask = photReadMaskFromIimage(frames, si=mosaicMask, maskname="HighpassMask”,
extendedMasking=True, calTree =calTree[i])

HIPE > frames = highpassFilter(frames,hpfradius,maskname="HighpassMask”, interpolateMaskedValues=True)

HIPE> ...

HIPE > map, mi = photProject(frames, pixfrac=pixfrac ,outputPixelsize=outpixsz,

alTree=calTree[i])

HIPE > simpleFitWriteg(map, fileRoot + + str(obsids[i]) + " _map_secondStep.fits")

Map from
individual OBSID — 2" pass

PACS-201 25

nhsc

. NASA Herschel Science /4
s Center

2. Now co-add the 2" pass HPF maps from
individual OBSIDs

El Console x

HIPE > images=ArrayList()
HIPE > for i in range(len(obsids)):

HIPE > ima = simpleFitsReader(file=fileRoot + + str(obsids[i]) + "_map_secondStep.fits")

HIPE > images.add(ima)

HIPE > mosaic=MosaicTask()(images=images, oversample=0)

Map from
combined OBSIDs - from 2" pass

PACS-201

TR

‘\"Eﬁf.!li'f""’““"l Pa rt 3
(from line 313 to 437)

After generating a “blind” mask in Part 1 and 2, the user can now try to
improve on that mask by using the information on the location of the
sources (e.g. coordinates), if this information is available.

v" To use the known coordinates of the sources, the script provides two
options:

A. The user inputs these coordinates (e.g. from a file) and a 2-d gaussian
procedure is used to “refine” the input source/s coordinates. The fitted
centroids are then used to generate a mask;

B. The input coordinates (from a file or from the metadata) are used to

directly generate a mask at these locations;

27

-_uns!ul!s!nsgnce '
Option A:

2-d gaussian fitting

To use this option, doSourceFit (line # 80) has to be set to True

Read-in the file with the input coordinates

v
v" For each input source, create a postage stamp using a given “cropsize”
v" do a 2-d gaussian fit on each postage stamp

v

use fitted “rasource” and “decsource” to generate a mask

NOTE: option A also includes the alternative case (line # 350 to 353) in which the user, with
no a-priori information on the location of the sources (i.e. no input file), performs a “blind”
2-d gaussian image on the map (e.g. mosaic2, see slide #) and uses the fitted centroids to
generate a mask.

PACS-201 28

Option A: In practice..

1. Input source file:

"=l Console x P

|
‘ HIPE> tlist,ralist,declist=readTargetList(tfile) ‘

2. For each source, convert ra/dec into pixel coordinates:

| =] Console x (—a)

|
‘ HIPE> pixcoor = mosaic.wcs.getPixelCoordinates(ralist[i],declist[i]) ‘

3. Define boundaries of postage stamp in pixel coordinates: rl, r2, c1, c2.
The postage stamp size is defined by “cropsize” (default = 20 pixels), e.g:

[=] Console x (—a)

|
HIPE> rl = int(pixcoor[0]-cropsize/2.) ‘

PACS-201 23

nhsc

NASA Herschel Science /4

S Center

4. Create postage stamp:

&l Console x ',

HIPE >cmap = crop(image=mosaic,rowl=int(pixcoor[0]-cropsize/2.), \
row2=int(pixcoor[0]+cropsize/2.), \
columnl=int(pixcoor[1]-cropsize/2.) \
column2=int(pixcoor[1]+cropsize/2.))

5. For each postage stamp, do a 2-d gaussian fit:

"=l Console x %,

l

HIPE> sfit = mapSourceFitter(cmap)

6. Get the coordinates centroid, ra/dec, from the fit:

£l Console x %

HIPE > rasourcel[i] = Double([sfit["Parameters"].data[1]])
HIPE > decsource[i] = Double([sfit["Parameters"].data[2]])

PACS-201

30

: NASRIHIe!s!thnce) w
Option B:

Source coordinates from file or metadata

In this case, doSourceFit (line # 80) has to be set to False

Then:

v" If input catalog file is provided, read-in the file with the input coordinates
v’ use the input coordinates to generate a mask

Or:
v' get source/s coordinates from metadata
v' use these coordinates to generate a mask

PACS-201 31

nhsc

NASA Herschel Science

— Option B: in practice..

- If input catalog file is available:

" Console x (=D

HIPE> tlist,ralist,declist=readTargetList(tfile)

HIPE > rasource = Doubleld(ralist)

HIPE > decsource = Doubleld(declist)

—> alternatively, if source/s coordinates are read-in from metadata:

" Console x 3

HIPE > tlist = String1d(1, obs[0].meta[“object”].value)

HIPE > rasource = Doubleld(1, obs[0].meta[“ra”].value)

HIPE > decsource = Doubleld(1, obs[0].meta[“dec”].value)

PACS-201 32

nhsc ™
In common to option A and B:

- With the source/s coordinates (“rasource”, “decsource”) — either from 2-d
gaussian fit/s or direct input/s from catalog/metadata — the new mask can now be
generated:

! Console X ', =
HIPE > radius = 20. |

dMask = mosaicMask.copy()

HIPE > mfc = MaskkromCatalogueTask()

HIPE > combinedMask, = mfc(combinedMask,rasource,decsource,Doubleld(len(rasource),radius),copy=1)

Centered on each source position (ra and dec), create a
circular “patch” (i.e. a mask) with a 20” radius. The patch
is big enough to fully cover the source in all bands.

PACS-201 33

" nhsc
N\ NﬂA Hersec':lthcwnce

Mask from Part 1: Updated Mask from Part 2: Updated Mask from Part 3:
from each OBSID from combined OBSIDs From known source/s coords.

PACS-201

nhsc

NASA Herschel Science
S Center

- Now step back and apply this new mask (improved version of the
mask from Part 1, 2 and 3) to do HPF on the Level 1 data of each OBSID:

= Console X | n

HIPE > for i in range(len(obsids)):
HIPE >

HIPE > frames, outMask = photReadMaskFromImage(frames, si=combinedmask, maskname="HighpassMask",
extendedMasking=True,calTree = calTree[i])

HIPE > frames = highpassFilter(frames,hpfradius,maskname="HighpassMask",interpolateMaskedValues=True)

HIPE >

HIPE> map, mi = photProject(frames, pixfrac=pixfrac,outputPixelsize=outpixsz,

calTree=calTree[i])

HIPE > simpleFitsWrit ap, fileRoot +"_" + str(obsids[i]) + ”_finalMap.fits")

Map from
individual OBSID — 3" pass

PACS-201 35

nhsc

NASA Herschel Science /4

e - now co-add the 3@ pass HPF maps from
individual OBSIDs: this is the FINAL map !

= Console X | 0]
HIPE >images=ArrayList() A‘

HIPE > for i in range(len(obsids)):
HIPE > ima = simpleFitsReader(file=fileRoot + " " + str(obsids[i]) + "_finalMap.fits")

HIPE > images.add(ima)

HIPE > mosaic=MosaicTask()(images=images,oversample=0)

HIPE > simpleFitsWriter(mosaic, fileRoot +"_finalMosaic.fits")

Map from combined OBSIDs - —
3" pass (e.g. mosaic)

PACS-201 36

This concludes the walk through for
the PACS photometer HPF pipeline !

PACS-201 37

nhsec

 NASA Herschel Science
B Center

Deglitching

(more information in tutorial # 402)

At the beginning of the script (line # 78), the user has to set the switch
dolindLevelDeg to either True or False;

If dolindLevelDeg is set to True, then deglitching is performed again
with a threshold for outliers detection more aggressive (15) with
respect to threshold (30) applied before Level 1 in the standard SPG
pipeline. You may want to follow this approach when the final mosaic
still contains many glitches

Note that, in the script, deglitching is performed in Part 2 (line # 257 to
263)

PACS-201 38

NASA Herschel Science '
s Center

2"d Level Deglitching

Spatial (2"d Level) Deglitching identifies glitches by exploiting spatial redundancy.
This is how it works:

] Console -0

HIPE > s = Sigclip(10, 15) A

HIPE > s.behavior = Sigclip.CLIP
HIPE > s.outliers = Sigclip.BOTH_OUTLIERS

HIPE > s.mode = Sigclip.MEDIAN \

HIPE > mapDeglitch(frames, algo = s, deglitchvector="timeordered", calTree=calTree[i])

4
Outliers are detected jwith a sigma-clipping algorithm and flagged as
glitches. Both positive and negative outliers are dete";ted. By
default, outliers are detected with respect to the median.

PACS-201 33

High-Pass Filter Radius:
hpfradius

Default Values (line # 161 to 164):

HIPE > If camera == ‘blue’:
HIPE > hpfradius = 15
HIPE > else:

HIPE > hpfradius = 25

v

These values (units: readouts) allow removal of 1/f noise while
preserving as much as possible the flux in the wings of the PSF (Point
Spread Function)

NOTE: the values above are optimized for point-sources. If the source of interest is
slightly extended (a few times the fwhm), the use of larger “hpfradius” is recommended.

PACS-201 40

NASA Herschel Science
s Center

Making the map:
outpixsz & pixfrac

The photProject task performs a simple co-addition of the images using the
drizzle method (Fruchter and Hook, 2002, PASP, 114, 144). The key parameters
are the output pixel size and the drop size (pixfrac). A small pixfrac value can
help to reduce the correlated noise due to the projection.

| = Console x ' p——

HIPE > map=photProject(frames, pixfrac = pixfrac, outputPixelsize=outpixsz, calTree=calTree]i]) H

Default Values (line # 104 to 108):

HIPE > If camera == ‘blue’:
HIPE > outpixsz=1.0
HIPE > pixfrac=0.1

HIPE > else:
HIPE > outpixsz=2.0
pixfrac=0.1

PACS-201 41

nhsc

NASA Herschel Science

Turnaround removal

NOTE: in the script, the frames corresponding to the telescope turnaround are removed each
time before creating the map. Turnaround frames are characterized by much lower coverage
(hence sensitivity) then normal science frames.

@\ Cross-scan distance

X l

~

turnaround

Scan leg length

| &l Console x —

HIPE > frames = filterOnScanSpeed(frames,limit=limits)

™~

The parameter “limit” is set at the beginning
Turnaround frames are executed at Si.th.e sEr|1|::;c”(I|ne # 9_2)' Il the f
different scan speed than normal .|m|ts - means.oren'.]ove all the frames
T — Wl-th a scan speed 10% higher/lower than
science frames scan speed.

PACS-201 i

Thank you !

PACS-201 43

