

# SPIRE Spectrometer Data Analysis: An Introduction

Nanyao Lu NHSC/IPAC

(On behalf of the SPIRE ICC, HSC & NHSC)













#### **Outline**

- Do you generally need to reprocess FTS data yourself?
- Data analysis examples with scripts and tasks available within HIPE.
  - Quick spectral noise assessment
  - Detector footprint on the sky
  - Faint source observations: further background subtraction and/or comparison with SPIRE photometer data
  - Deriving spectral line fluxes
  - Flux correction for a semi-extended target or a pointing offset
  - Mapping data analysis













## Do you need to reprocess your FTS data?

Normally, the answer is NO if you have data from HIPE 11 and onward. But,

- Both calibration and pipeline are still being improved at this point. There are times when you might want to reprocess your data with the latest calibration product.
  - For example, in HIPE 13 (~Jan 2015):
    - The nonlinearity correction will be upgraded to improve telescope background subtraction for those observations taken at the beginning of SPIRE cooler cycles (i.e., at lower detector temperatures than normal).
    - Some low-resolution observations will be better calibrated in HIPE 13 as well.
- At this point, HIPE 11 data are available in the Herschel science archive. To obtain HIPE 12 data, you can either
  - request on-demand data reprocess in the user interface of the Herschel science archive, or
  - reprocess HIPE 11 data to HIPE 12 using the reprocessing script in HIPE













#### **FTS Spectra in Different HIPE Versions**

#### Mrk 231 observed on OD209



Standard pipeline Level-2 output













## **FTS Spectra in Different HIPE Versions**

#### Mrk 231 observed on OD209



Standard pipeline Level-2 output













#### **FTS Spectra in Different HIPE Versions**

#### Mrk 231 observed on OD209



Standard pipeline Level-2 output













## **Getting HIPE v12 data**

Option I: Elect the on-demand processing option in HSA













## **Getting HIPE 12 data**

**Option II:** Alternatively, one can reprocess an observation of HIPE 11 to HIPE 12 using the reprocessing script that comes within HIPE.















#### **Outline**

- Do you generally need to reprocess FTS data yourself?
- Data analysis examples with scripts and tasks available within HIPE.
  - Quick spectral noise assessment
  - Detector footprint of an observation on sky
  - Faint source observations: further background subtraction, comparison with photometer data
  - Deriving spectral line fluxes
  - Flux corrections for semi-extended targets or a pointing offset
  - Mapping data analysis













## **Background Documents**

- The SPIRE Data Reduction Guide (DRG; data structure, processing, reprocessing, many details and cookbooks)
- The SPIRE Handbook (instrument observing modes, calibration...)
- Swinyard et al. 2014, MNRAS, 440, 3658 FTS calibration
- Makiwa et al. 2013, Applied Optics, 52, 3864 FTS beams
- Wu et al. 2013, A&A, 556, 116 Semi-extended sources
- Public wiki on SPIRE
   http://herschel.esac.esa.int/twiki/bin/view/Public/SpireCalibrationWeb













#### **SPIRE Data Reduction Guide (DRG)**

General SPIRE data info

SPIRE/FTS data structure and processing, and data analysis receipes















## **Spectrometer Useful Scripts**

- Array Footprint Plot
- Background Subtraction
- Line Fitting
- Thumbnail Mosaic Plot
- Convolve Spectrum
- Noise Estimate
- Cube Fitting
- Combining PACS and SPIRE spectra

Available in HIPE!













## **Quick Noise Assessment**



Useful to see if an observation suffers any significant systematics

- Red and blue: Total rms noise (systematic + random)
- Gray spectrum: randon noise only
- Black curve: HSpot predicted total noise















## **Detector Footprint on Sky**





Useful for visualization of the extent and relative location of the target w.r.t. the detector array.













## **Faint Point-like Targets**

- Checking the source extent
  - To make sure it is a point source
- Further background subtraction
- Comparing with the photometer

Faint sources: a few to < ~10 Jy; Medium sources: ~10 to < ~100 Jy.















## **Examples of Point-source Spectra**

900 1000 1100 Frequency [GHz]



Level 2 pipeline products

some residual telescope background, which can be further removed.

for Newcomessing







## Residual Telescope Emission Removal: Using Surrounding Channels



- Using a median spectrum from the co-aligned detectors as the residual telescope spectrum.
- This (or a polynominal fit to it) is then subtracted from the spectrum of the central detectors.

















## **Background Subtraction**



Improves the continuum flux of a faint, point-like target.















## Comparing with SPIRE photometer

#### HIPE task **SpecMatchPhot**





#### Synthetic photometry also output in a table:

| Synthetic photometry results |          |                    |                    |                    |                    |                   |                    |    |
|------------------------------|----------|--------------------|--------------------|--------------------|--------------------|-------------------|--------------------|----|
| ▼ Meta Data                  |          |                    |                    |                    |                    |                   |                    |    |
| None                         |          |                    |                    |                    |                    |                   |                    |    |
| ▼ Table Data                 |          |                    |                    |                    |                    |                   |                    |    |
| Index                        | names [] | spec250 [Jy]       | spec350 [Jy]       | spec500 [Jy]       | phot250 [Jy/beam]  | phot350 [Jy/beam] | phot500 [Jy/beam]  |    |
| 0                            | SLWB2    | 0.5524880934532026 | 2.2750690830393063 | NaN                | 1.4595235477934987 | 4.5625949527907   | 14.688015400555697 | •  |
| 1                            | SLWB3    | 1.7079940700571916 | 2.900204401489005  | NaN                | 1.4595235477934987 | 4.5625949527907   | 14.688015400555697 | 33 |
| 2                            | SLWC2    | 0.7795710130592949 | 2.4846351262954545 | NaN                | 1.4595235477934987 | 4.5625949527907   | 14.688015400555697 |    |
| 3                            | SLWC3    | 3.5301211206430834 | 7.208739635225893  | NaN                | 1.4595235477934987 | 4.5625949527907   | 14.688015400555697 |    |
| 4                            | SLWC4    | 2.271641002463886  | 3.1913230785009703 | NaN                | 1.4595235477934987 | 4.5625949527907   | 14.688015400555697 |    |
| 5                            | SLWD2    | 1.910852171027807  | 3.147223386802127  | NaN                | 1.4595235477934987 | 4.5625949527907   | 14.688015400555697 |    |
| 6                            | SLWD3    | 2.4930847414696724 | 3.41185471573297   | NaN                | 1.4595235477934987 | 4.5625949527907   | 14.688015400555697 |    |
| 7                            | SSWB2    | NaN                | NaN                | 1.7915315388884716 | 1.4595235477934987 | 4.5625949527907   | 14.688015400555697 |    |
| 8                            | SSWR3    | NaN                | NaN                | 1 5853857093619672 | 1 4595235477934987 | 4.5625949527907   | 14 688015400555697 |    |













## **Partially Extended Sources**

- Effect of a semi-extended source
- What correction is needed?
- Semi-extended (flux) correction tool (SECT) in HIPE















# Identifying Possible Partially Extended Sources

 The spectrum shows kinks and discontinuities where the beam size changes





Point-source calibration







Frequency (GHz)



Frequency (GHz)











# Other possible causes for a spectral gap

Cases appropriate for using SECT (the semiextended source fluc correction tool) in HIPE.

(Caution: the CO lines, from warm/dense molecular gas, may arise from a more compact region than the cold dust continum.)











## **Semi-extended Correction Tool (SECT)**

(cf. DRG Sect. 7.5)



The final spectrum normalised to include only emission inside the reference beam

Assumption: source distribution is independent of frequency

Emission excluded from final spectrum

#### Source model



Units of output spectrum are Jy "in the reference beam"



Theory is described in *Wu et al., A&A, 556, 116 (2013* 













## **Serpens MM1 (1342216893)**

#### Corrected SERPENS\_MM1 spectrum

Correction for 15.0" gaussian source; offset 0.0", 0.0"















## **Spectral Line Fluxes**

Line fitting script (for unresolved lines):



- Interactive line fitting (both unresolved & partially resolved lines)
- Cube fitting script (to fit one or more lines in a cube)

#### **DRG**















## **Line Fitting (for Unresolved Lines)**

#### HIPE SPIRE useful script: Spectrometer line fitting

SLWC3: Mrk 231





SSWD4: Mrk 231









#### **Spectral Resolving Power Depends on Wavelength**

















#### **Partailly Resolved Lines**

- The [NII] 205 µm line might be partially resolved if its intrinsic velocity is large enough (e.g., > 250 km/s)
- In this case, either use a SincGauss model to fit the line, or apply a correction factor to compensate for the flux underestimate in using a SINC-only line profile (see DRG Sect. 7.10.7)

Fit with SINC only

Fit with SINC convolved with Gaussian (SincGauss model)













#### Interacytive Line Fitting: SincGauss Profile



- Works best when S/N is high.
- For fainter lines, it might be better to use a SINC profile for fitting, and then correct the resulting flux for an estimated velocity width (see SPIRE DRG Sect. 7.10.7 for more info).









#### **Mapping Observations**















## **Sky Coverage**



#### Actual positions observed on the sky for a fully sampled oobservation











## **Naïve Projection**



Naive Projection is the standard algorithm currently used in the pipeline

SSW positions observed on sky (intermediate sampled 2x2 raster): 19" 68°14'00" 68°13'30" 68°13'00" 68°12'30" DEC [dd:mm:ss] 68°12'00" 68°11'30" 68°11'00" 68°10'30" 68°10'00" 68°09'30" Grid with 19" squares (for 68°09'00" SSW which has beam 68°08'30"

21:01:20

21:01:30

RA [hh:mm:ss]



21:01:50





size ~17-20")







#### Mapping Observations: Investigation & Analysis

#### **DRG**

#### 7.7. Recipes for mapping observations

- 7.7.1. Understanding the SPIRE beam and how it relates to mapping observations
- 7.7.2. Check clipping
- 7.7.3. Restricting the data made into the cube
- 7.7.4. Pointing Information
- 7.7.5. Gridding Algorithm
- 7.7.6. Combining several observations
- 7.7.7. Holes in the map: examining the coverage
- 7.7.8. Maps with faint continuum levels

#### 7.11. Cube Analysis

- 7.11.1. SPIRE cubes, general considerations
- 7.11.2. Extracting spectra from a SPIRE spectral cube
- 7.11.3. Extracting a point source from the map
- 7.11.4. Matching cube spectra from SSW and SLW
- 7.11.5. Convolving a cube to a different beam size
- 7.11.6. Cube fitting with the Spectrum Fitter GUI
- 7.11.7. Cube fitting and line intensity/velocity maps
- 7.11.8. Publication quality plots for mapping data
- 7.11.9. Comparison with photometer maps

#### Investigate the data before mapping:

- Exclude some data?
- Select a map maker (e.g., naïve)
- Grid size considerations
- **—** ....

#### Analyse the data in the final cube:

- Convolve to different beam sizes
- Fit spectral lines to produce line map
- **–** ....











## Cube Analysis Examples �



#### ➤ Line intensity maps:

CO line intensity maps



 $\delta RA$  (")

Convolving a cube to a common beam size (i.e., independent of  $\lambda$ )

#### Grid of FTS spectra:

- Black curves: original data
- Blue/Red: convolved to a common beam of 80 arcsec





Photometer map of Orion Bar + FTS mapping grid Right Ascension (J2000)

 $\delta RA$  (")











 $\delta RA$  (")