
PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

DP Scripting

David Shupe
NHSC

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Introduction
•  DP Scripting is based on Python

–  Jython, the Java equivalent of C-based Python
–  HCSS/HIPE includes an implementation of Jython 2.5

•  Only a few language features needed to get going
–  Java is not required – use scripting to glue together the provided

Java modules from the pipelines, PlotXY, or the Numerics library
–  It is fine to write “quick-and-dirty”, procedural code in Python.

Object-oriented code is not required
–  Many elements are specific to HIPE so advanced Python features

aren’t needed

•  Python resources in the HIPE documentation contain most of what is
needed
–  See the Scripting and Data Mining Manual

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Outline
•  Selected Python features (core language features, usable

in Jython or C-based Python)
–  Lists and indexing
–  Tuples and dictionaries
–  Import statements

•  Data structures/objects hierarchy (simple to complex)
–  Numeric arrays and methods
–  TableDatasets

•  Common pitfalls
–  Assignment of array variables – not the same as a copy
–  Unintended copies of large objects

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Variables
• No ‘data-typing’ or declaration needed
•  Assignment:
a = 1  
b = 2"

•  Strings can use single or double quotes:  
c = “hello world” 
e = ‘hi there’"

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

More Python basics
•  The comment character is the pound sign
this is a comment"

•  The continuation character is the backslash
x = a + b + \  
 c * d * e"

•  A formatted string uses C-style format characters and the
percent sign 
print “integer = %d, real = %f” %(j,x)"

•  Print to an ascii file 
fh = open(‘myoutput.txt’,’w’)  
print >> fh, “integer = %d,” %j  
fh.close()"

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Lists
•  Lists are very general and powerful structures
•  Easy to define, and the members can be anything:
x = [1, 2, ‘dog’, “cat”]"

•  Appending or removing items is easy:
x.append(5)
x.remove(‘dog’)

•  Empty list
z = []

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Tuples and Dictionaries
•  Tuples are just like lists – except they can’t be

modified:
d = ('one’, 'two', 'three')"

•  Dictionaries give names to members
wavel = {'PSW':250, 'PMW':350,\  
 'PLW':500}

•  Easy to add members
wavel['pacsred'] = 160  
print wavel['PSW']

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Conditional Blocks
•  Syntax:
if condition1:  
 block1  
elif condition2:  
 block2  
else:  
 block3"

•  Notice that blocks are denoted by indentation only
•  Example in SPIRE large map pipeline scripts:

if pdtTrail != None and \  
 pdtTrail.sampleTime[0] > pdt.sampleTime[-1]+3.0:  

" "pdtTrail=None  
" "nhktTrail=None"

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

For Loops
•  Syntax of a for loop:

for var in sequence:  
 block

•  The sequence can be any list, array, etc.
Example from pipeline scripts:
for bbid in bbids:  
 "block=level0_5.get(bbid)  

"print "processing BBID="+hex(bbid)"
•  The range function returns a list of integers. In general

range(start,end,stepsize)where start defaults to 0 and
stepsize to 1.  
print range(5)  
[0, 1, 2, 3, 4]"

•  The range function can be used to loop for an index:  
for i in range(20):  
"

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Indexing and Slicing
•  Any sequence (list, string, array, etc.) can be indexed

–  zero is the first element
–  negative indices count backwards from the end
x=range(4) # [0, 1, 2, 3]  
print x[0] # 0  
print x[-1] # 3

 "

•  A slice consists of [start:end:stride] in general.
Start defaults to 0, end to last, stride to 1. Examples:
print ss[:2] # ['a', 'b']  
print ss[::2] # [‘a’, ‘c’]  
print ss[::-1] # [‘d’, ‘c’, ‘b’, ‘a’]

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Functions
•  Functions are defined by def statement plus an indented code block:

def square(x):  
 result=x*x  
 return(result)"

•  Optional arguments are given default values in the definition:
def myfunc(x,y=1.0,verbose=True):  
 z = x*x + y  
 if (verbose):  
 print "The input is %f %f and”+\  
 “ the output is %f" %(x,y,z)  
 return (x,y,z)"

•  Arguments are passed by value – the names in the def statement are
local to the body of the function
"

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Import statements

• import makes Jython modules or Java
packages available to your session or script

• First form uses full names:
import herschel.calsdb.util
print herschel.calsdb.util.Coordinate"

• Second form puts name in your session
from herschel.calsdb.util import Coordinate

•  Third form includes all
from herschel.calsdb.util import *

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Many imports are done for you
• HIPE imports many packages on startup
• “jylaunch” (for batch mode) does too

• When writing modules or plugins,
explicitly import everything you need

• No cost for importing a module that was
imported previously

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Commands can be run in the background
• Use the bg function with your command

inside a string
bg(‘scans=baselineRemovalMedian(obs.level1)’)"

• Right-click on a script in Navigator to
run in background
HIPE> bg('execfile(”~/jyscripts/bendoSourceFit_v0_9.py")')  
Started: execfile(”~/jyscripts/bendoSourceFit_v0_9.py”)  
Finished: execfile(“~/jyscripts/bendoSourceFit_v0_9.py”)

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Hierarchy of data structures
(partial list)

• Numeric arrays
• Array Datasets
• TableDatasets
• Products (e.g. DetectorTimeline)
• Context Products – not covered here

The items lower on this list, are containers of
the items one level above

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Numeric arrays
•  In the herschel.ia.numeric package
•  Separate classes for data type and dimension

– Float1d, Float2d….Double1d, Double2d…Int1d,
Int2d…,Long1d, Long2d….Bool1d, Bool2d….etc

•  Several ways to initialize:  
z = Double1d(10) # [0.0, …, 0.0]  
z = Double1d.range(10)#[0.0,1.0,…9.0]  
z = Double1d([1,2,3]) # list  
z = Double1d(range(10,20))"

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Numeric functions
•  Basic functions are in
herschel.ia.numeric.toolbox.basic"
– double->double array-to-array functions:
ABS, ARCCOS, ARCSIN, ARCTAN, CEIL,
COS, EXP, FLOOR, LOG, LOG10, SIN,  
SORT, SQRT, SQUARE, TAN"

– Array functions returning a single value
MIN, MAX, MEAN, MEDIAN, SUM, STDDEV"

•  Advanced functions for filtering, interpolation,
convolution, fitting, etc. in other
herschel.ia.numeric.toolbox packages

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Numeric arrays cont’d
•  For 1d, slicing/indexing is the same as Python lists
•  For 2d+ arrays, dimensions are set off by commas

– E.g. array3d[k,j,i]
– The “fastest” index is the last

• Same ordering as C, C++, Java, other languages
• opposite ordering as Fortran, IDL

•  Tips to improve performance
– Avoid looping over array indices
– Take care not to create too many temporary copies

of arrays (more on this later)

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

TableDatasets
•  TableDatasets gather Numeric arrays with units

x = Double1d.range(100)  
tbl = TableDataset(description=“test table”)  
tbl[“x”]=Column(data=x,\  
 unit=herschel.share.unit.Duration.SECONDS)  
tbl[“sin”] = Column(data=SIN(x))"

•  Access  
print tbl[“x”].unit  
print tbl[“x”].data[4] #5th element of data"

•  Easily visualized with TablePlotter

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Products
• Products are the containers of Datasets
• Every Product has a 1-to-1 correspondence to a

FITS file (but there are caveats on usability)
• Datasets are added and referenced by name:
prod = Product()  
prod[“signal”] = tbl  
print prod[“signal”][“x”].unit  
p=PlotXY(pdt[‘voltage’][‘sampleTime’].data,\  
 pdt[‘voltage’][‘PSWE4’].data)

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Learn from the GUI
• Many Views and Tasks execute commands in

the Console
– Copy and paste into scripts when useful

• After opening up a compound object in a viewer,
copy and paste the expression that accesses
the piece you want

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Listing methods with the dir function

• The dir function lists the methods specific to
a given class
print dir(variable.__class__)"

• In HIPE it is reachable from right-click on
variable, “Show methods”

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Avoiding common pitfalls

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Assignment of array is not a copy
• Simple example:
a = Int1d.range(2)  
print a  
[0, 1]  
b = a  
b[0] = 5  
print b  
[5, 1]  
print a  
[5, 1] ????

• What happened?
Assignment is “by
value”. What is the
value of a? It is an
object which is an
instance of the Int1d
class. Then b=a binds
the name b to the
same object to which a
is bound.

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

A useful visualization
• Do not think of

variables as physical
locations in memory

• Variables are names
that are bound to
objects

•  The drawing shows the
state after:
b = a

Names

 a b

Values/Objects

Int1d
[0, 1]

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

What does b[0] = 5 really do?
•  The line
b[0] = 5
is equivalent to
b.__setitem__(0,5)
which is a method of our
object, that modifies a
single element

• Our two variables are still
bound to the same object

Names

 a b

Values/Objects

Int1d
[5, 1]

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

How do I get a new array object?
•  For a new copy of the

array object, do
b = a.copy()

•  This also works:
b = Int1d(a)

•  The diagram at right
shows the state after
b[0] = 5

Names

 a b

Values/Objects

Int1d
[0, 1] Int1d

[5, 1]

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Automatic creation of arrays
• Another example:
a = Int1d.range(2)  
print a  
[0, 1]  
b = a  
b = b + 5  
print b  
[5, 6]  
print a  
[0, 1]

• What happened? At
b + 5
a new array was
automatically created to
hold the sum of b and
5. Then the name b was
bound to this new array
object. a was left
unchanged.

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

In-line operations
• A changed example:
a = Int1d.range(2)  
print a  
[0, 1]  
b = a  
b += 5  
print b  
[5, 6]  
print a  
[5, 6]

• What happened? At
b += 5
the in-line operator +=
means that the
operation is done in
place – no new copy is
made of the object to
which a and b are
bound.

• Saves memory

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Garbage collection
• A related example:
a = Int1d.range(2)  
b = a.copy()  
b = b + 5

•  For a time, three array
objects are taking up
memory

• What happens to the first
copied array? Eventually
the garbage collector
frees up the memory

Names

 a b

Values/Objects

Int1d
[0, 1] Int1d

[5, 6]
Int1d
[0, 1]

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Changes inside higher-level products
•  Another example:

z=Double1d.range(5)  
td=TableDataset()  
td[“c1”]=\  
 Column(data=z)  
print td[“c1”].data  
#[0.0,1.0,2.0,3.0,4.0]  
z += 2  
td[“c2”]=\  
 Column(data=z)  
print td[“c1”].data  
#[2.0,3.0,4.0,5.0,6.0]

Names
 td z

Values/Objects

TableDataset
[“c1”], [“c2”]

Double1d
[2.0,.. 6.0]

Column
unit, data

Column
unit, data

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Avoiding temporary copies of arrays
• Assume we have three

large arrays named
 x, y, c
and we want to compute
y = (x + SIN(y))/c

• As typed above, some
temporary arrays are
made, then discarded

• Can greatly increase
memory usage 

• Here’s a way to do it
with in-line operations,
making no array copies.
y.perform(SIN)  
y += x  
y /= c

•  The y.perform does
an in-place operation.
y.apply(SIN)makes
a copy, like SIN(y)

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Reference slides

Advanced topics….

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

List comprehensions
•  List comprehensions are a shorthand for writing a

loop that appends to a list
print [x*x for x in range(10)]  
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]"

•  The above is short for:
list = []  
for x in range(10):  
 list.append(x*x)  
print list

•  Handy for converting any sequence into a list
•  For numerical calculations, it is more efficient to use

the Numeric functions

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Context Products
•  Context Products are the containers of Products

– More precisely, contains references to products
– Not understandable outside HIPE/HCSS

•  Two flavors of Context Product:
– Map Context – maps keys/names to product refs
mc = MapContext()  
mc.refs[“prod1”] = ProductRef(prod))  
p = mc.refs[“prod1”].product"

– List Context – ordered list of Products
lc = ListContext()  
lc.refs.add(ProductRef(prod))  
p = mc.refs[0].product

PACS

NHSC Data Processing Workshop – Pasadena
10th- 14th Sep 2012

Building up complex products
• Array => TableDataset => Product =>

Context:
x = Double1d.range(100)  
table = TableDataset()  
table[“col1”] = Column(data=x)  
prod = Product()  
prod[“error”] = table  
mcontext = MapContext()  
mcontext.refs[“unc”] = \  
 ProductRef(prod))"

