

Daniel Angerhausen

Rensselaer Polytechnic Institute (RPI)

Spectrophotometry in 30s

- -Atmospheric composition
- -Atmospheric structure (T/P profile, day night side heaexchange)
- -formation history
- -next generation instruments: biomakers (?)

 $S/N > 1000 \text{ in } \sim 2h$, stars mag 6-10

ADVANTAGES

Flexibility

- timing
- mobility
- instrumentation

Low telluric influence

- absorption
- background

Unique phase space

- IR- and V-band coverage
- IR coverage betw. HST and Spitzer

SCIENCE

High precision photometry

- improved parameters
- moons, rings etc

Planetary atmospheres

- redistribution
- temperature inversion
- abundances

Stellar atmospheres

- starspot temperatures
- limb darkening

SOFIA will carry out new and competitive transit observations.

SOFIA – in practice

-First exoplanet transit observation:

1 October 2013 with FLIPO

-two (independent) reductions

VIDEO (featured on NASA TV etc.):

http://www.youtube.com/watch?v=y-W3xoOu0NE

5

Decorrelation via PCA

observational Parameters (PSF, "weather", telemetry etc.)

→ principle components

Advantages: solves degeneracies between parameters, reduces number of fitting parameters

Disadvantage: loss of physical insight

Decorrelation vs. residuals

observational Parameters

principle components

Green: linear; red: 2nd order

Spot or not?

- -"spot signature" disappears in the z' lightcurve, after principle component correction, remains in blue, also partly present in comp. stars
- → most probably (achromatic!) systematic effect (density?, ozone?)

However, this means we are actually able to see these effects if they were real – only possible with >2 simultaneous channel (HIPO, FLIPO)

MCMC transit fits

wavelet-based noise analysis (Carter and Winn 2009):

(still) red noise dominated

Results (work in progress)

- Keep in mind: -still room for improvement (systematics),
 - almost no baseline for this observation,
 - -inefficiency of tertiary
- → Comparable to HST results

If we reach similar sensitivities also in the NIR, we can do even cooler (literally) science.

The next decade

SOFIA & other platforms

-Obvious synergies with ground-based telescopes: SOFIA "filling the gaps" between bands, very important channels for water, methane (see backup slides: science case II)

-until JWST, SOFIA is the only quasi space based platform > 1.7 micron (HST limit): Kepler (II) follow-Up and Pre-JWST Characterization of Hot Jupiters and Super-Earths down to mag \sim 12 : H₂O, CH₄, CO₂, PAHs etc.

- -even with JWST more synergies than competition:
 - variable systems, long period planets → single transit observation combining e.g. HST (optical), SOFIA (opt. & NIR), JWST (MIR) not possible with ground-based platforms, SOFIA's mobility
 - different targets: e.g. for SOFIA characterization of "one-shot" gas-giants, while JWST for "multi-transit" deep analysis of super-earths

Conclusion

-Absolute (!!!) photometry in HIPO data, proof that we have a quasi space based platform for photometry (in the optical)

-still more work to understand the red noise

-great EPO success (e.g. 450 shares on NASA's facebook)

-goal: expand to the NIR (with FLITECAM and/or 2nd gen.)

-3 more observations in cycle 2 (see backup slides)

-Also in practice:

SOFIA <u>does</u> carry out new and competitive transit observations.

Wishlist

-Give us enough time:

"We need 8 hours." -- "Do it in 2!" works on NCC-1701 but not on NASA-747 (deployments?)

- -systematics tests with FLIPO on ~1h leg
- -fully reflective tertiary
- -dedicated 2nd generation instrument: NIMBUS (see backup slides)

Thank you!

Backup slides

Science case I:

HIPO and FLITECAM multi-band of the young planetary system CoRoT-2

- (1) Is CoRoT-2b really an inflated planet?
- (2) What is CoRoT-2A's total spot coverage fraction?
- (3) What is the spot temperature on CoRoT-2A?

Only FLIPO (HIPO+FLITECAM) on SOFIA at "quasi space-based" precision

Science Case II

GJ 1214b: mini-neptune or super-earth?

SOFIA:

0.120

0.116

-crucial wavelength region not observable from the ground: FLITECAM Paschen alpha and "Ice"; 1.9 and 3.05 micron

NIMBUS

The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA

NIMBUS

Kepler Follow-Up and Pre-JWST Characterization of Hot Jupiters and Super-Earths down to mag \sim 12 : H₂O, CH₄, CO₂, PAHs etc.

NIMBUS: EChO/Finesse 'lite' in 3-5 years

NASA-GSFC: compl. Phase A study, optical assembly, detectors

Additional science:

Trans-Neptunian Objects (TNO), Solar System occultations, brown dwarf atmospheres, carbon chemistry in globular clusters, chemical gradients in nearby galaxies, and galaxy photometric redshifts.