Status Report on SOFIA Exoplanet Transit Capability

Ted Dunham
Georgi Mandushev
Daniel Angerhausen

Introduction

- Update on HD189733b transit observation on 10/1/2013 (UT) with FLIPO
 - Originally Avi Mandell's FLITECAM-only proposal
 - Search for water in HD189733b using Pa alpha filter
 - Morphed into a FLIPO demonstration transit
- Talk Outline
 - Introduction and practical matters (Ted)
 - Data analysis, systematics, and results (Georgi)
 - User's perspective and independent data analysis (Daniel)
 - Wrap-up (Ted)

Scientific Value of Transits

- Atmospheric structure and chemistry
 - Rayleigh scattering, scale height
 - NIR spectrophotometry
 - Search for presence of interesting compounds (e.g. water, methane)
 - Appear as apparent radius differences with wavelength
- Heat exchange -- exoplanet weather
 - Phase functions, secondary eclipse
- Starspot and plage size and color temperature
- Primary interest is in 1-5 micron range
- More later from Daniel

Observational Issues

- The prize is not easily grasped.
- Need to measure small features in shallow transits
 - Overall fractional error ~few x 10⁻⁴
- Not easy for <u>anybody</u> systematics dominate at this level
 - Kepler, HST, Spitzer, ground-based systems all have problems. We do too.
 - Bill Rose: "Why don't you pick something hard to do??? Geeeesh."
 - Known problem areas for SOFIA:
 - Water vapor, ozone, and Rayleigh extinction; static air density, Mach number (?), pointing, jitter, and focus.
 - Reliable housekeeping data essential for correcting these
 - Some instrument-specific details can be important
- Differential photometry (field standard) is NOT a cure-all
 - Usually doesn't happen anyway
 - When it does it works best if the differential correction is small

Systematics, I

Extinction

- Rayleigh scattering

 (optical; proportional to static pressure and airmass)
- Ozone (optical)
- Water (IR)
- Volcanic aerosols
 - Can vary by 0.1-1%
 - Episodic problem
 - IR impact uncertain

Systematics, II

- Aero-optical PSF effects
 - Optical PSF dominated by shear layer scattering
 - Refractivity (v = n-1) is proportional to density
 - $\delta \rho / \rho_{\text{static}}$ is roughly constant
 - Image FWHM expected to scale with static density
 - Very broad PSF wings interact with aperture
 - Perceptible additional enclosed flux across entire HIPO field!
 - Rose expects FWHM dependence on Mach number
 - We don't see this, at least so far
 - So far no obvious "dome seeing" contribution

Systematics, III

- Other PSF-related effects
 - Defocus, especially early in the flight
 - Really should have automatic SMA_T1 focus update
 - Jitter (causes erratic enlarged time-averaged PSF)
- Pointing noise
 - To first order, fixed by (proper) flat fielding, right?
 - Never really works right. Stable pointing is best, decorrelated pointing errors are second best.
 - Jitter increases noise, but uncompensated drift is fatal
 - Exoplanet science occurs at low frequency

Systematics, IV

- Instrument-related effects
 - Carried out lab tests for HIPO (with small PSFs)
 - Millimag photometric changes occur with large CCD temperature changes
 - Perceptible CCD controller temperature sensitivity
 - Important to operate controller uniformly. Kepler lesson.
 - Kepler-like image position effects noticed but overwhelmed by the airborne environment
 - Overscan may be a useful decorrelating variable
 - No similar information available for FLITECAM

Differential Photometry

- SCAI-9 Test
 - HD 85216 (V=8.4, A3) and BD+19 2271 (V=8.8, F5)
 - 19" aperture (red) 26" (blue), open filters
 - Raw photometry (left), differential (right)
 - Systematics still there in differential light curves at a few millimags

Transit Observation Circumstances

- Several problem areas known before takeoff
 - Very little baseline before the event, none after
 - Short FLITECAM LHe hold time
 - Short flight; must observe transit first thing. Focus unstable.
 - WVM not installed
- In-flight problems
 - FPI failed at start of leg (blown circuit breaker); fell back to FFI
 - HIPO guiding not properly tested, so didn't attempt that
 - Lost the little pre-transit baseline we had
 - Pointing was very poor. FFI in poor focus for a while.
- Post-flight problems
 - During data analysis found electronics-related problems in FLITECAM affecting global reset and co-adding.
 - No useful FLITECAM data obtained.

HIPO Observational Details

- Observed in Basic Occultation mode
 - Full frames to maximize field standard possibilities
 - Field standards all very much fainter than target.
 - 3 second integrations on red side, Sloan z' filter
 - ~2700 measurements
 - 7 second integrations on blue side, Johnson B filter
 - ~1000 measurements
 - Broken into chunks to keep file sizes manageable
- Filters selected to avoid ozone problems

but

Corrections, II

- Setup leg, 2013-09-27 UT
 - Short leg, little change in density or Mach number
 - Strong positional effects
 - Star moved across field
 - Setting up position on FLITECAM array
 - Position correction
 - Fit and subtract polynomial of position jointly in X&Y
 - Use this approach for correcting transit data

Corrections, III

- Re-measure density/
 Mach/focus dependence
 - Intended to do this with FLITECAM -- didn't work
 - Beautifully executed test on 2013-10-01 flight
 - Density section ruined by clouds at 40000 feet!
 - Will try again next month with FLITECAM
- Why the bump in the Mach number test?
 - Centroid offset

Light curves

(bias subtracted, Blue side flattened)

Transit Fit, I

- To fit or not to fit:
 - Ideally fit for astrophysical parameters only
 - Important corrections need fitting too
 - Try to fix the parameters you can
- Fix variables we think we understand
 - System parameters from HST data; limb darkening
 - Epoch, period, impact parameter, radius, inclination
 - Fix density.
 - When fit the coefficient becomes too large to believe
 - Possibly real structure is obliterated
 - Weak point we still need a better handle on this

Transit Fit, II

- Fitted parameters include:
 - Flux zero point in B and z'
 - Differential atmospheric extinction in B & z'
 - After removing measured extinction from Landolt stars
 - Centroid corrections
 - Differential X and Y offsets in B and z'
 - Radial offset in B and z'
- Fit is done simultaneously to both datasets

Transit Fit, III

- What can we say about this?
 - How much is real?
 - 189733 is active
 - How much is not?
 - Without baseline, can't tell
 - Density glitch is close to "star spot".
 - Cause & effect or coincidence?
 - Klaus Huber's model - hmmmmm

Switch to Daniel's File Here

Improvements for next time

- Get good FLITECAM data!
 - Need WVM operating; calibration not required
- Repeat shear layer test with FLITECAM (no clouds)
- Observe bright stable star pair for a LONG leg
 - Search for other possible systematic effects
- Keep pointing and focus under tight control
 - HIPO guiding, possibly automatic focus update
- Get plenty of pre- and post-transit baseline!

Longer Term Issues

- Deployments will be involved
 - Short SOFIA leg lengths are a serious impediment
- Sunrise constraint needs to be eliminated
- Install Nasmyth blower
 - Cool FLIPO periscope & FLITECAM window
 - Biggest background contributors for FLITECAM
- Install the fully reflective tertiary
 - Systematics dominate only when shot noise is low enough.
 - We're stuck with an observing efficiency hit of 20% to 60%
 - Using the FPI only wins back part of that
 - But it's worse with time-limited events you can't even make it up with more observing time.