

SOFIA multi-wavelength observations of nearby, dense star-forming clusters

Maxime J. Rizzo

University of Maryland, College Park SOFIA Teletalk, February 2015

Team: L. Mundy (UMD), X. Koenig (Yale), S. Rinehart (NASA GSFC), D. Benford (NASA GSFC), D. Leisawitz (NASA GSFC)

Outline

- 1. Project description, goals and status
- 2. Data reduction & products
- 3. Preliminary results
 - Typical sources & sample statistics
 - "New" sources
 - Cases of source multiplicity
 - Extended sources
- 4. Morphology of extended sources
 - NGC1333.1
 - IRAS 20050+2720
 - Ophiuchus WL 16
- 5. Future work

37 um image (this work), with IRAC 8um contours

Project description & goals

Survey of nearby dense cores

- Saturate Spitzer/WISE
- Challenge their spatial resolution
- 12 nearby cluster candidates (50+ fields)
- 11, 19, 31, 37 um
- Gap-filling project: short observations

Goals:

- 1. Complete the SED and fill the 10-40um gap for 80+ YSOs
- 2. Characterize the spatial extent of the 31 and 37um emission
 - Where does most of the emission come from?
 - Are there multiple protostars contributing to the emission?

Why are dense cores important?

- Clusters are the location where most stars form
- Cores common in the youngest clusters
- Very dense, very bright, multiple heating sources
- Testing grounds for star formation theories

37 um image (this work), with IRAC 8um contours

SOFIA in the big picture

- Why are SOFIA observations unique?
 - Can study sources enshrouded in dusty envelopes: hard to study at shorter wavelengths
 - Provides the necessary angular resolution to resolve many more cores
 - Access to saturated regions

Data reduction

- Steps of data reduction:
 - Use flight calibrators to determine aperture correction
 - Isolate extended sources from the sample, treat with larger aperture (and no correction)
 - Manually align all fields, all wavelengths with WISE WCS reference
 - Some fields without a bright point source could not be aligned!
 - Technique still imperfect: what is the best approach?
 - Background subtraction with median filter (using Python photutils package)
 - Aperture photometry

Data products

Background-corrected, smoothed mosaics in all 4 bands

Data products

Data products

Spectral index distribution over the whole sample

Sample statistics

Cluster	Distance (pc)	fields	4-band approximate 5σ sensitivity (Jy)	Point sources	Extended sources	New sources
Ophiuchus	160	9	0.4 0.4 1.4 3.2	9	8	0
NGC 1333	240	4	0.3 0.3 1.3 2.5	4	2	0
IRAS 20050	700	2	0.2 0.2 1 1.6	7	0	6
Cepheus A	730	2	0.2 0.2 0.8 1.5	2	2	0
Cepheus C	730	1	0.2 0.2 0.8 1.5	3	1	1
NGC2264	760	5	0.2 0.3 1.1 1	15	2	2
S140	900	1	0.1 0.5 1	5	2	6
S171	850	1	0.1 0.2 0.6 1	2	0	0
NGC 7129	1000	1	0.1 0.1 0.6 0.8	2	2	1

49 19 16

"New" sources?

- Sources previously unresolved by Spitzer/WISE at 24/22um
- Sources saturating Spitzer/WISE

NGC2264 "Cone Nebula", WISE, 22um

NGC2264 "Cone Nebula", MIPS, 24um

NGC2264 "Cone Nebula", SOFIA, 3-band

Cases of source multiplicity

IRAS 20050+2720

Extended sources

NGC7129 19, 31, 37 µm

\$ 10000 AUs

External heating source(s)

Cepheus A 19, 31, 37 µm

Internal heating source

Understanding SOFIA's PSF

Point sources?

- Example: NGC 1333.1
- Is this an extended source?

Model fitting

Distance = 240pc

- Density law = -0.7
- Envelope mass = $3 M_{sun}$
- Inner radius = 30 AU

Point sources?

IRAS 20050 +2720

IRAS 20050 +2720

- Typical intermediate-mass star-forming region
- Millimeter continuum sources detected (e.g. Beltran et al. 2008), as well as outflows (e.g. Bachiller et al.1995)
- Identified source multiplicity from interferometry mm data & IRAC maps
- Embedded protostars at different evolutionary stages inferred
 - Intermediate mass YSOs could form after a first generation of lowmass stars has already evolved
- SOFIA allows unprecedented characterization of the evolutionary stage of the deeply embedded protostars

IRAS 20050 +2720

Ophiuchus WL16

- Classification not clear in the literature (T-Tauri, Herbig Ae/Be, Class I…)
- Presence of mid-IR extended emission attributed to a 800 AUs disk (Ressler 2003)
- Strong PAH emission seen with IRAC and ground-based instruments

Ophiuchus WL16

- SOFIA observations show that the extent of longwavelength emission is much larger, ~3000 AU
- A disk that large is very hard to justify
- Are we seeing a larger envelope, within which the disk has made a cavity?

 $3.4\mu m$

 $4.6\mu m$

 $11.1\mu m$

Ophiuchus WL16

Can we tell something with SOFIA and modeling?

 $19.7 \mu m$

 $22 \mu m$

 $31.5 \mu m$

 $37.1\mu m$

 $12 \mu m$

Ophiuchus WL16

- Spherical model can't account for the size of extension
- Actually, hard to find parameters that reproduce the observed profile
- Need to do more modeling – SOFIA's spatial resolution allows a unique look at the object's morphology

A lot is left to do

- Answer remaining questions about data reduction
 - Wings of calibrators?
 - WCS alignment technique (from FITS header maybe)?
- Waiting for new data to be processed as level 3, to complete survey
- Look for more advanced modeling software?
- Look at the sample both in terms of statistics, and in terms of individual objects
 - Most objects are very well studied: need to search extensive literature to find where observations can serve the most

Conclusions and summary

- We identify the SED of ~70 YSOs in nearby clusters, and characterize their spatial extension
- We provide the first far-IR data points of ~16 sources, that were previously either unresolved or saturated
- We use a spherically symmetric model of a dust envelope to fit SEDs and spatial shapes of the objects – but this doesn't work for a large fraction of our sources with complex geometry

Thank you for your attention!

