

Development of TiN KID arrays for ccar submm/far-IR astronomy

Jonas Zmuidzinas + CIT/JPL KID group

19th February 2014

1999 – 2013: MKID (Microwave Kinetic Inductance Detector)

KID/MKID projects

INSTITUTIONS	PROJECT	DESCRIPTION
MPIfR Bonn, SRON, TU Delft	A-MKID	20 kpixel submm camera for APEX (R. Gusten)
IRAM, Neel Institute, Cardiff	NIKA2	5 kpixel mm camera for IRAM 30m (A. Monfardini)
UCSB, JPL	ARCONS	2 kpixel optical camera for Palomar (B. Mazin)
Penn, NIST	BLAST upgrade	1000 pixel, dual-pol focal plane for balloon-borne far- IR polarimetry. PI: M. Devlin
Cardiff, SRON, TU Delft, Neel Institute Grenoble, Centro de Astrobiologia (Spain), AimValley, QMC Instruments	spaceKIDS http://www.spacekids.eu/	EU FP7 project. Development of MKID arrays for space applications. PI: Matt Griffin
Argonne National Lab	http://www.aps.anl.gov	Detectors for use with ALS synchrotron
Fermilab	http://www.fnal.gov	100 kpixel optical MKID camera for Dark Energy
NAOJ, U. Tokyo, U. Tsukuba, U. Saitama	http://atc.mtk.nao.ac.jp	CMB polarimetry: GroundBIRD, LITEBIRD
Columbia U.	SKIP <u>http://arxiv.org/</u> <u>abs/1308.0235</u>	Balloon-borne CMB polarimetry. PI: A. Miller
Penn, JPL	ICarlS	Balloon-borne far-IR spectroscopy. PI: J. Aguirre

Heike Kamerlingh Onnes University of Leiden 1908: liquid helium 1911: superconductivity 1913: Nobel prize

4

Electrical Conductivity

$$\begin{split} \vec{F} &= q\vec{E} - \frac{m}{\tau}\vec{v} & \vec{J} = nq\vec{v} \quad \text{Current density} \\ m\vec{a} &= m\frac{d\vec{v}}{dt} \quad \text{scattering} \\ \frac{d\vec{v}}{dt} &= \frac{m}{t}\frac{d\vec{v}}{dt} \quad \text{scattering} \\ \frac{d\vec{v}}{dt} + \frac{1}{\tau}\vec{v} &= \frac{q}{m}\vec{E} \quad \text{Newton's} \\ \frac{d\vec{v}}{dt} + \frac{1}{\tau}\vec{v} &= \frac{q}{m}\vec{E} \quad \text{Newton's} \\ \frac{d\vec{v}}{dt} &= \frac{q}{m}\vec{E} \quad \frac{\text{Newton's}}{2^{nd} \text{ law}} & \vec{J} &= \sigma\vec{E} \quad \text{Dhm's law - definition of } \sigma \\ \text{assume:} \\ \vec{v}(t) &= \text{Re}\left[\vec{v}_0 e^{j\omega t}\right] & \sigma(\omega) &= \frac{\sigma(0)}{1+j\omega\tau} \quad \text{Conductivity} \\ \vec{E}(t) &= \text{Re}\left[\vec{E}_0 e^{j\omega t}\right] & \sigma(\omega) &= \frac{nq^2}{n}\frac{1}{j\omega} \quad \frac{\text{Superconductor:}}{\tau \to \infty} \end{split}$$

Two-fluid model

$$\begin{aligned} \text{``superconducting electrons'':} \quad \sigma_{\rm sc}(\omega) &= \frac{nq^2}{m} \frac{1}{j\omega} \\ \text{``normal electrons'':} \quad \sigma_{\rm normal}(\omega) &= \frac{\sigma(0)}{1 + j\omega\tau_{\rm normal}} \approx \sigma(0) \\ \text{Superconducting + normal:} \quad \sigma_{\rm total} &= \sigma_{\rm sc} + \sigma_{\rm normal} \\ Z(\omega) &= \frac{1}{\sigma_{\rm total}(\omega)} \frac{l}{wt} = \frac{1}{\frac{1}{R} + \frac{1}{j\omega L}} \\ &= \frac{j\omega L}{1 + j\omega L/R} \approx j\omega L (1 - j\omega L/R) \\ &= +\frac{\omega^2 L^2}{R} + j\omega L \\ \text{Note :} \quad Z(\omega) \to 0 \text{ as } \omega \to 0 \end{aligned}$$

Pair breaking by photons

Pair breaking occurs when: $h\nu = \hbar\omega > E_{\rm gap} = 2\Delta$

Pair breaking does not occur at microwave frequencies

Pair breaking does occur at far-IR/IR/visible frequencies

Impedance vs Frequency

19th February 2014

 $\delta x = \frac{\delta \nu_r}{\nu_r} = \frac{1}{2} \frac{\delta L_{\text{kinetic}}}{L} \sim \frac{10 \,\text{kHz}}{1 \,\text{GHz}} = 10^{-5}$

MKID = Microwave Kinetic Inductance Detector

High resistivity: ρ_{TiN} ~ 500 ρ_{AI} (at 10 K)

TiN absorber used in Herschel/PACS bolometers

High absorption efficiency

Frequency multiplexing (18 x 24 = 432 pixels)

Fabrication - Rick Leduc at JPL

Frequency multiplexing (18 x 24 = 432 pixels)

Fabrication - Rick Leduc at JPL

- Low readout frequency (200 MHz) enabled by use of TiN (large $\rho_n \rightarrow$ large L_k)
- Resonator frequencies span 185-250 MHz (65 MHz bandwidth or 0.43 octaves)
- 415/432 resonators deeper than 6 dB (96% yield)
- 160 kHz average spacing

- High $Q_r \rightarrow$ low collision probability
 - \blacktriangleright Do not rely on precise placement of resonator frequencies ($\sigma_{\rm f}$)
 - \blacktriangleright Collision probability independent of $\sigma_{\rm f}$ for high mux density
- Need $Q_r \sim 10^5$ to multiplex 500-1000 pixels/octave
- Previous slide: 432 pixels / 0.43 octave = 994 pixels/octave @ 96% yield

Multichannel Digital Readout

- FPGA implements digital channelizer for readout tone separation
- Microwave (GHz) readout requires up/down frequency conversion
- RF readout (< 500 MHz) allows ``direct drive'' with ADC/DAC
 - Reduces readout bandwidth, complexity, and cost
 - Converters are typically 12-bit, 500 MSPS (ADC < \$200 ea)
 - Use frequency readout since $\beta = \delta x / \delta Q^{-1} \sim 50 ~(\propto 1/\omega_r)$

CIT/JPL Development Timeline ^c

- 1987: kinetic inductance bolometer proposed (McDonald/NIST)
 - SQUID readout
- 1999: ``modern'' KIDs proposed (Zmuidzinas & Leduc)
 - Microresonator as pair-breaking detector, T<<T_c operation, vector RF/microwave readout, cryogenic transistor LNA, frequency multiplexing
- 2003: lab demo of x-ray detection (Day *et al.,* Nature)
 - Excess noise measured, origin not understood
- 2008: excess noise produced by resonator capacitor
 - due to surface layer of TLS fluctuators (Gao *et al.,* APL)
- 2010: TiN introduced, high Q demonstrated (Leduc et al., APL)
 - High resistivity → THz LEKID absorber, high KI fraction, 100-200 MHz readout
- 2012: interpixel EM coupling and its cure (Noroozian *et al.,* IEEE MTT)
- 2013: operation into deep nonlinear KI regime (Swenson *et al*. JAP)
- 2013: 432-pixel, 350 μm MAKO camera demonstrated on CSO (April)
 - CCAT PDR (September)
- 2014: NbTiN resonator bolometer demonstrated (Swenson *et al.,* in prep.)

Sensitivity

- Determined by responsivity R_x and noise S_x
 - Noise equivalent power (NEP)

$$NEP(\nu) = \frac{\sqrt{S_x(\nu)}}{\mathcal{R}_x(\nu)} \qquad W \, \mathrm{Hz}^{-1/2}$$

Fractional frequency responsivity

$$\mathcal{R}_x = \frac{dx}{dP_o}$$
 (rolls off due to τ_{qp} , τ_r)

- Fractional frequency noise power spectral density $S_x(\nu) = PSD_x(\nu) = \langle |FFT[\delta x(t)]|^2 \rangle$ Hz⁻¹ (σ_x^2 in 1 Hz BW around ν)
- Detector NEP should be below photon NEP
 Increase responsivity and/or reduce noise

Responsivity model

• Optical power produces quasiparticles:

 Quasiparticles cause frequency shift: kinetic inductance $\delta x = \frac{\delta f_r}{f_r} = \frac{1}{2} \frac{\delta L_{\text{kinetic}}}{L} = \frac{1}{2} \frac{L_{\text{kinetic}}}{L} \frac{\delta L_{\text{kinetic}}}{L_{\text{kinetic}}} \sim \frac{1}{2} \alpha \frac{\delta N_{\text{qp}}}{2N_0 \Delta V_L}$ fraction Responsivity is given by: single-spin electron density $\mathcal{R}_x = \frac{dx}{dP_o} = \frac{\alpha \gamma S_2 \eta_o \tau_{\rm qp}}{4N_0 \Delta^2 V_L} \qquad \qquad \alpha \gamma S_2 \eta_o \sim 0.5 - 1$ of states Rely on measurements of R_x Optical to qp energy - Adjust N_0 to match measurements conversion efficiency Methods to boost responsivity: - reduce T_c (smaller Δ , larger τ_{qp}) - reduce inductor volume V_i (smaller absorber \rightarrow microlenses) (recycle phonon energy - place inductor on thermal island)

- effectively increases $\tau_{\rm qp}$

Noise model

- Random fluctuations of quasiparticle population
 - Photon arrivals $NEP_{photon}^2 = 2P_oh\nu(1+n_o)$
 - qp recombination

$$NEP_{g-r}^{2} = \frac{4\Gamma_{th}\Delta^{2}}{\eta_{o}^{2}} + \frac{2N_{qp}\Delta^{2}}{\eta_{o}^{2}}(\tau_{max}^{-1} + \tau_{qp}^{-1})$$

- Readout noise
 - Dominated by first-stage cryo amplifier

$$G_x^{\mathrm{amp}} = \frac{kT_{\mathrm{amp}}}{P_g} \frac{Q_c^2}{4Q_r^4} \; .$$

For simplicity, keep generator power P_g below bifurcation

• Capacitor noise $S_x = PSD(\delta C/2C)$

Array Design Details

Ver	Layout	Opt. Couple	Inductor			Сара	acitor	Freq	Lith Steps	Pixels	Pol.	
			Area	Trace	Sep	t	Area	Sep				
			mm²	μm	μm	nm	mm²	μm	MHz			
1G	Square	Bare	0.64	4	8	50	<0.4	2	170- 240	3	432	1
2G	Hex 1mm²	μLens (F/2)	0.3	2	4	50	0.6	2-6	200- 240	2	488	1
3G	Hex 1mm²	μLens (F/2)	0.3	1	9	100	0.6	4-9	100- 150	2	488	2

- 1G: Tested at CSO (MAKO)
- 2G: Currently lab testing
- 3G: Design phase

350 µm Pixel Design (TiN 1G)

- CSO/MAKO demonstration
- LEKID pixel style (Doyle et al 2007)
 - F# and λ set absorber size:
 - F λ / 2 ~ 0.8 mm
 - Matching of absorber to wave impedance in silicon (90 Ω) determines TiN fill factor and volume of inductor/absorber
 - Capacitor area: trade-off between readout frequency & capacitor noise vs focal plane filling efficiency
 - 432 pixels fills one stepper field
 - Allows rapid iteration

TiN 1G: 432-pixel array

Fabrication - Rick Leduc at JPL

TiN 1G - frequency sweep

- Measurements results were promising:
 - MUX density: ~ 500 pixels/half octave
 - High yield (> 95% visible, >90% with usable spacing)
 - Uniform coupling and low ripple on transmission line

TiN 1G – Coupling Q

- Very uniform coupling Q
 - Design value: 2x10⁵

TiN 1G: Lab Noise Measurement Mounted in dilution refrigerator $\frac{h\nu}{k_B} = 68 \,\mathrm{K}$ – Cold blackbody, filters at 212 μ m T_{BB} = 35 K, Pinc ~ 120 pW $S_{\delta f/f}^{2}$ (1/Hz) $T_{BB} = 25 \text{ K}$, Pinc ~ 50 pW Photon noise visible to a few Hz • Optical efficiency ~ 0.7 Capacitor noise dominates • below 1 Hz 10⁻¹⁸ Loading higher than CSO 100 Predict ~ 2-3x photon NEP at Frequency (Hz) CSO (for single polarization)

19th February 2014

MAKO: a prototype camera

(Swenson et al, SPIE Proc., 2012)

MAKO In Lab

MAKO In lab:

- Mounted on optics to mimic SHARC-II
- ROACH board + clock on electronics rack
- Beam mapper placed at focus to test point source response

Cryostat cold head

- Cryostat by Precision Cryogenics
- PT410 Pulse tube cooler
- 3He system
 - base T 240mK under loading
 - hold time ~ 36 hours

MAKO Optics

MAKO cryostat: optics designed to closely match CSO's SHARC-II camera

	Absorber Size	# Pixels	Polarizations	Backshort?
	(mm²)	(nominal)		
SHARC-II	1 x 1	384	2	yes
Mako	0.8 x 0.8	432	1	no

• A SHARC-II pixel receives 4.4x more optical power compared to a MAKO pixel

SHARC-II detector array (individually wired)

19th February 2014

CCAT

10 MHz rubidium standard & 1 PPS Signal (from GPS antenna)

10 MHz standard, Clock, and Amp bias can be shared by multiple ROACH readouts

MAKO Readout Electronics

- ROACH Readout
 - Open-source FPGA readout (CASPER/Berkeley)
 - Adopted existing hardware to meet observing date
 - Maximum readout frequency: 250 MHz
 - 500 MSPS ADC converters operating in 1st Nyquist zone

- MAKO implemented with ~ 500 pixels with one ADC and one DAC
- FPGA firmware supports up to 4k pixels per ROACH
- FPGA firmware developed by R. Monroe/JPL

- Front end software:
 - Calibration and measurement of IQ streams
 - Found > 95% of designed pixels

300 K vs 77 K load

Readout interface and visualization software developed by L. Swenson

19th February 2014

First Light on the first night of observing!

Photo by L. Swenson

Some decent weather nights:

G34.3

• And on poor weather nights...

The moon at λ = 350 μ m

Back in the Lab

- MAKO NEFD was ~ 8x that of SHARC-II
 - Was expected to be detector noise limited
 - Recall Sharc-II pixels receive 4.4x more light
- Second-generation arrays (TiN 2G)
 - Lower NEP & NEFD: reach BLIP
 - Increased responsivity (smaller volume → microlenses)
 - Reduced capacitor noise (larger area, increased electrode separation)
 - Better uniformity (Tc)

Second-generation 484-pixel TiN array

TiN 2G: Hexagonal Packing

- Developed layout to put absorbers on hexagonal lattice while keeping RF readout on rectangular lattice
 - Hexagonal packing is easier to optically couple to than square packing

Packaged hexagonally packed TiN 2G devices

Layout showing inductor, capacitor and coupling (red) + lens positions (black)

19th February 2014

TiN 2G: Improving NEP

- Microlens-coupled arrays offer a number of benefits
 - Smaller inductor volume -> increased responsivity
 - Larger capacitor area -> reduced noise
 - Equal capacitor and inductor areas minimizes readout frequency for fixed total pixel area

Laser etched square packed lens array

HFSS microlens schematic

Microlens Array Options

• Demonstrated several fabrication methods:

- Laser etching (Commercial, few \$/lens)
- Photoresist defining and etching
 - In Development JPL
- Gradient Lenses (Caltech/JPL ~ \$0.20/lens)

Laser etch lens (Veld Laser)

Photo-resist etch (C. Lee, JPL)

Gradient Lenses (Caltech/JPL)

Photos of fabricated microlens arrays

Gradient Index (GRIN) Microlens

- S /JPLCCAT
- Potential low cost lens solution in development at Caltech/JPLCCA
- Made by etching SOI surface to create a gradient in surface index and equal optical path length to focus

Packaged TiN 2G Test Device

19th February 2014

TiN 2G: Initial Lab Results

300 K blackbody vs Dark

- CCAT
- noise significantly higher when viewing 300 K blackbody

TiN 3G: Dual Pol Design

- Device layout similar to 2G
- Capacitor fingers spread out more
 - Reduce capacitor noise
- Dual polarization layout
 - HFSS simulations show >95% absorption in both polarizations

Schematic of a dual polarization sensitive layout

Array Design Details

Ver	Layout	Opt. Couple	Inductor			Сара	acitor	Freq	Lith Steps	Pixels	Pol.	
			Area	Trace	Sep	t	Area	Sep				
			mm²	μm	μm	nm	mm²	μm	MHz			
1G	Square	Bare	0.64	4	8	50	<0.4	2	170- 240	3	432	1
2G	Hex 1mm²	μLens (F/2)	0.3	2	4	50	0.6	2-6	200- 240	2	488	1
3G	Hex 1mm²	μLens (F/2)	0.3	1	9	100	0.6	4-9	100- 150	2	488	2

- 1G: Tested at CSO (MAKO)
- 2G: Currently lab testing
- 3G: Design phase

Summary

- On-sky, full system demonstration of absorber-coupled TiN MKID array
 - > 400 pixels demonstrated on sky
 - Existing FPGA firmware capable of 4k pixels / ROACH
- On-sky NEFD consistent with lab results
 - Reasonable understanding of TiN / pixel design
 - Lens-coupled devices are approaching BLIP
 - Dual-polarization pixel design under way
- Second MAKO/CSO run being planned for spring 2014
- MAKO collaboration: L. Swenson, C. D. Dowell, A. Kovacs, R. Monroe, M. Hollister, H. G. Leduc, J. Zmuidzinas

How do we get a 3D view of the submm sky?

19th February 2014

Evolution of the Z-spec concept

19th February 2014

 $A_{\text{total}} < 1 \text{ cm}^2 \text{ for } R = 700, \ \lambda = 1 \text{ mm}$

See Shirokoff et al, Proc. SPIE, 2012

Superconducting spectrometer

19th February 2014

Bibliography

- Zmuidzinas J. "Superconducting Microresonators: Physics and Applications", Annu. Rev. Condens. Matter Phys. 2012 **3**:169-214 (2012)
- Barends R., et al. "Quasiparticle Relaxation in Optically Excited High-Q Superconducting Resonators", Phys. Rev. Lett. **100**:257002 (2008)
- Doyle S, et al. "Lumped element Kinetic Inductance Detectors", J. Low Temp. Phys. **151** 530-36 (2008)
- Noroozian O, et al., "Crosstalk Reduction for Superconducting Microwave Resonator Arrays", IEEE Trans. Micr. Theory Tech. **60** 1235-1243 (2012)
- Swenson L., et al. "Operation of a titanium nitride superconducting microresonator detector in the nonlinear regime", J. Appl Phys. **113** 104501 (2013)
- McKenney C, et al. "Design considerations for a background limited 350 micron pixel array using lumped element superconducting microresonators", Proc. of SPIE **8452** 84520S (2012)
- Swenson L, et al. "MAKO: A pathfinder instrument for on-sky demonstration of low cost 350 micron imaging arrays", Proc. SPIE **8452** (2012)
- Swenson L, et al. "The Status of MAKO", Proceedings of LTD-15 (2013)
- McKenney C, et al. "Lumped element kinetic inductance detectors: Pixel design for large scale far infrared arrays", Proceedings of LTD-15 (2013)

© 2013. CCAT. All Rights Reserved. www.CCATObservatory.org

BACKUP SLIDES

SHARC-II Optics

SHARC II: a Caltech Submillimeter Observatory facility camera with 384 pixels

 C. Darren Dowell^a, Christine A. Allen^b, Sachidananda Babu^b, Minoru M. Freund^b, Matthew B. Gardner^a, Jeffrey Groseth^a, Murzy Jhabvala^b, Attila Kovacs^a,
 Dariusz C. Lis^a, S. Harvey Moseley, Jr.^b, Thomas G. Phillips^a, Robert Silverberg^b, George Voellmer^b, and Hiroshige Yoshida^c

^aCalifornia Institute of Technology, Mail Code 320-47, 1200 E. California, Pasadena, CA 91125
^bNASA-Goddard Space Flight Center, Greenbelt, MD 20771
^cCaltech Submillimeter Observatory, 111 Nowelo St., Hilo, HI 96720

Parameter/Item	Value/Composition
f/ ratio	f/4.5
pixel size	$4.6'' \times 4.6''$
field of view	2.3 square arcminutes
angular resolution, 350 μm	9" FWHM
mean Strehl ratio, 350 μm	0.95
window	1 mm high-density polyethylene
	z-cut crystal quartz, 2 mm
77 K filter	front surface: 58 μ m clear polyethylene
	back surface: 50 μ m black poly, 8 μ m clear poly
4 K	quartz (same specifications)
filters	33 cm^{-1} lowpass (Cochise Instruments/P. Ade)
4 K	$350~\mu{ m m},\Delta\lambda{ m (FWHM)}/\lambda=0.13$
bandpass filters	$450 \ \mu { m m}, \ \Delta \lambda { m (FWHM)} / \lambda = 0.10$
(Cochise Instruments/P. Ade)	$850~\mu{ m m},\Delta\lambda{ m (FWHM)}/\lambda=0.08$

Table 2. Summary of SHARC II Optics.

MAKO Optics

Optics designed to match SHARC-II as much as possible

Parameter/Item	Value/Composition			
f/ratio	f/4.5			
pixel size (geometric)	$0.8 \ \mu m \ge 1.4 \ \mu m \ (0.8 \ \mu m \ge 0.8 \ \mu m \ absorber)$			
pixel size (on sky)	$3.59'' \ge 6.57'' (3.59'' \ge -3.59'' \text{ absorber})$			
filling factor	57%			
rows x columns (# pixels)	$16 \ge 27 (432)$			
usable pixels	418 resonances identified, >380 currently used (88-97% yield)			
field of view	$105'' \ge 97''$ (2.83 square arcminute)			
angular resolution, 350 $\mu {\rm m}$	9" (?)			
mean Strehl ratio, 350 $\mu {\rm m}$	0.95 (?)			
window	1 mm high-density polyethylene			
	z-cut crystal quartz, 2 mm			
65 K stage	front surface: 58 μ m clear polyethylene			
	back surface: 50 μ m black poly, 8 μ m clear poly			
4 K	100 μ m and 300 μ m low-pass filter (QMC)			
250-270 mK (on sample holder)	350 $\mu \rm{m}$ bandpass, 10% bandwidth (QMC)			

TABLE I: Summary of MAKO optics

