Water, Hydroxyl, and Ice in the Asteroid Belt

Andrew Rivkin
JHU/APL

27 March 2013 SOFIA Community Task Force Tele-talk

Outline

- A bit of setup
- The L-band Main-belt/NEO Observing Program (LMNOP)
 - Some initial results
 - Toward a taxonomy of hydrated minerals on asteroids
- Where SOFIA comes in

Collaborators and Fellow Travelers

- Josh Emery
- Humberto Campins
- Julie Castillo-Rogez
- Eric Volquardsen
- Ralph Milliken
- Lucy Lim
- Ellen Howell

Meteorites: the original sample return

- 10⁸ kg of mass accreted/year
- 50,000-100,000 falls of 10 g or more
- Impact of ~m-sized object ~every year

Meteorite Classification

- Two main groupings:
 - Chondrites: (relatively)
 pristine, unprocessed,
 undifferentiated
 - Achondrites: products of melting, igneous rocks, differentiated
- Chondrites > 85% of falls

From NAU Meteorite Laboratory (http://www4.nau.edu/meteorite/)

Chondrites

- Four types of chondrites, differing in O isotopes, exact elemental ratios
- 90% of chondrites classified as ordinary chondrites
- Carbonaceous chondrites
 5% of chondrite total
- CC generally considered closest matches to solar

From NAU Meteorite Laboratory (http://www4.nau.edu/meteorite/)

Chondrites as planetary ingredients

- Elemental abundances good match to solar for rock-forming elements
- Mineral composition match to nebular condensation expectation
- Textures (etc.) consistent with low-T history
- Contain CAIs, oldest solar system solids
- Chondrites representative original starting material of inner solar system
- (Chondrites representative of rocky portions of outer solar system objects, too!)

REE patterns compiled by Korotev (meteorites.wustl.edu/goodstuff/ree-chon.htm)

Carbonaceous chondrites

- The most primitive materials in the meteorite collection*
- Many (most?) aqueously altered, formed beyond ice line
- CM abundant hydrated minerals, ~10% H₂O (or equivalent in OH) by weight
- CI practically all hydrated minerals, up to 20% H₂O by weight
- Also, organic material including amino acids

*by some measure of "primitiveness"

Identifying meteorite parent bodies

- Immediate parents = NEOs
- NEO orbits evolve from main asteroid belt
- Fireball tracks match asteroid belt orbits
- Remote sensing/lab spectroscopy to make further links
- (Moon, Mars special cases)
- Some material may be too weak to survive passage from main belt to NEO, or from NEO to Earth.
- Organic, water-rich objects high priority for NASA (ESA, JAXA, RSA...) sample return

Spurny et al. (Nature, 2003)

The prevalence of carbonaceous material

- Evidence suggests lowalbedo asteroids dominate asteroid belt
- Carbonaceous material dominates IDP population
- However, carbonaceous chondrites are rare falls (~5%)
 - There's reason to believe some are too fragile to survive passage to Earth

Masiero et al. 2011: WISE data

Carbonaceous Chondrites, Hydrated Minerals, and the People Who Love Them

- Sample return from a water/ organics-rich C chondrite high scientific priority, in the works for ISAS, NASA. Finalist for ESA.
- Recent dynamical models suggest carbonaceous material may have been delivered from outer solar system
- Missions are expensive, rare, fail (sorry, Russia)
- Remote sensing required for reconnaissance, plus data for vast majority of objects

Spectroscopic Detection of Hydrated Minerals in Asteroids

Two important spectral regions

1. 3-μm Region

- 2.7 μm OH fundamental
- ~3.0 H₂O overtone
- Few suitable observing sites

2. 0.7- μ m band

- Fe²⁺-Fe³⁺ charge transfer band
- Seen in some phyllosilicates
- Good correlation with some groups

Asteroid Taxonomy (in a small number of bullets)

- Three main "complexes" and handful of outlying classes
- Defined using 0.4-1.0 μm data, starting to incorporate to 2.5 μm
- Longer wavelengths: OH/ H₂O, other volatiles
- Carbonaceous chondrites associated with C complex
- Comet nuclei usually D class

Asteroid Taxonomy (in a small number of bullets)

- Three main "complexes" and handful of outlying classes
- Defined using 0.4-1.0 μm data, starting to incorporate to 2.5 μm
- Longer wavelengths: OH/ H₂O, other volatiles
- Carbonaceous chondrites associated with C complex
- Comet nuclei usually D class

Observing in the 3-µm Region

- While 0.7-µm band is useful not diagnostic
- Strong absorptions in 3-μm region from interesting species
 - OH 2 2.7 μ m
 - H₂O ~2.9-3.0 μ m
 - CH $^{\sim}3.3-3.4 \mu m$
 - CO₂, CH₄, NH₃, carbonates...
- Earth's atmosphere limits observing sites
- New instruments, new reduction pipelines —>new opportunities!

Observing in the 3-µm Region

- While 0.7-µm band is useful, not diagnostic
- Strong absorptions in 3-μm region from interesting species
 - OH 2 2.7 μ m
 - $H_2O \sim 2.9-3.0 \,\mu m$
 - CH ~3.3-3.4 μm
 - CO₂, CH₄, NH₃, carbonates...
- Earth's atmosphere limits observing sites
- New instruments, new reduction pipelines —>new opportunities!

"Main Belt Comets"

- Objects on asteroidal orbits exhibiting cometary activity
 - 3 of 5 in Themis Family
 - Can't evolve from cometary orbits
- Thermodynamical arguments: activity must be driven by ice sublimation
 - Recent impact exposure of ice?
- Too small/faint for spectroscopic ice detection

(Images taken with the UH 2.2-meter telescope by H. Hsieh and D. Jewitt, University of Hawaii.)

Themis Dynamical Family

- Formed by breakup of ~300-400 km object, ~2 Gya
- 3.08-3.24 AU,
 e 0.09-0.22
- One of largest families
- Perhaps 3% of all asteroids are members of family
- C complex

Results

Absorption feature in all spectra

- Fairly broad, rounded
- Centered at $^{\sim}$ 3.1 μm

Themis fits to ice frost

- Max absorption coeff for H_2O ice at 3.1 μm
 - very strong → saturates easily
- Very short path lengths to keep from saturating
 - grain coatings ~ 0.045 μm thick on
 30 μm grains
 - ~30% coated grains (intimate mixture)
 - ~10% of surface as areal mixture (not thoroughly modeled)

Analysis - Organics

Feature at ~3.4 μm that is not fit by H₂O model

- Organics → -CH₂ and -CH₃ aliphatic stretch
 - small 3.3 μ m \rightarrow aromatics?

24 Themis, ice, and Occam's Razor

- Discovery of ice frost + organics on 24 Themis (Rivkin & Emery, Campins et al. 2010)
 - Quickly followed by discovery on 65
 Cybele (Licandro et al. 2011)
 - Consistent with relationship to MBCs
- Aqueous alteration is* exothermic
 - Melt ice, react with rock to make hydrated minerals, heat system, melt more ice...
 - So might expect ice or hydrated minerals, not both?
- No evidence of hydrated minerals on Themis
- So no melting? And undifferentiated Themis et al.?

Rivkin and Emery (2010)

*for some value of "is" (Clinton, 1998)

L-band Main-belt/NEO Observing Project (LMNOP)

- IRTF (3-m telescope on Mauna Kea), using Spex instrument (2-4 μm)
- 317 observations of 179 objects, 100 C-complex (as of 3/1/13)
- Survey paper in preparation, have been focusing on interesting objects (Ceres, Vesta, Themis, Lutetia...)
- Anticipate stopping point fall 2013 (SpeX upgrade)

L-band Main-belt/NEO Observing Project (LMNOP)

- IRTF (3-m telescope on Mauna Kea), using Spex instrument (2-4 μm)
- 317 observations of 179 objects, 100 C-complex (as of 3/1/13)
- Survey paper in preparation, have been focusing on interesting objects (Ceres, Vesta, Themis, Lutetia...)
- Anticipate stopping point fall 2013 (SpeX upgrade)

Breakdown of observations

L-band Main-belt/NEO Observing Project (LMNOP)

- IRTF (3-m telescope on Mauna Kea), using Spex instrument (2-4 μm)
- 317 observations of 179 objects, 100 C-complex (as of 3/1/13)
- Survey paper in preparation, have been focusing on interesting objects (Ceres, Vesta, Themis, Lutetia...)
- Anticipate stopping point fall 2013 (SpeX upgrade)

Breakdown of objects

Band shapes in 3-µm region

- "Pallas type", linear shape beyond 2.8 μm
 - → CM-like, phyllosilicates?
- "Ceres type", minimum
 ~3.05 μm, additional
 minima
 - → Brucite, carbonates?
- "Themis type", minimum
 ~3.1 μm
 - → Frost, organics?
 - → Separate "Cybele type"?
- No band

A detour to Ceres

- Largest object in main belt, (in)famously classified as a "dwarf planet"
- ~2x larger than Pallas, Vesta, Hygiea, Themis parent body
- Surface minerals (brucite, carbonates) formed via aqueous alteration in presence of CO₂
- Shape model suggests ice mantle over rocky core
- Thermal models suggest liquid water may persist today just above rocky core
- Hygiea has similar spectrum: similar history?

A detour to Ceres

- Largest object in main belt, (in)famously classified as a "dwarf planet"
- ~2x larger than Pallas, Vesta, Hygiea, Themis parent body
- Surface minerals (brucite, carbonates) formed via aqueous alteration in presence of CO₂
- Shape model suggests ice mantle over rocky core
- Thermal models suggest liquid water may persist today just above rocky core
- Hygiea has similar spectrum: similar history?

Some initial findings

- Ch asteroids are highly likely to be Pallas types (>29/31)
- B asteroids are less likely to be Pallas types than other types
- 20 low-albedo asteroids are larger than 200 km:5 are Ceres-like, 6 Pallas-like, 5 are Themis/Cybele-like, 4 are too noisy to tell.
- Three of the 4 largest Ccomplex asteroids are Ceres-types

Object	SMASS class	3-μm type
1 Ceres	С	Ceres
2 Pallas	В	Pallas
10 Hygiea	С	Ceres
704 Interamnia	В	Ceres
52 Europa	С	Ceres?
511 Davida	С	Pallas
87 Sylvia	X	??
65 Cybele	Xc	Themis/Cybele
31 Euphrosyne	Cb	Themis/Cybele
624 Hektor	D (Tholen)	??

Ten largest low-albedo asteroids Hektor data from Emery et al.

Some initial findings

- Ch asteroids are highly likely to be Pallas types (>29/31)
- B asteroids are less likely to be Pallas types than other types
- 20 low-albedo asteroids are larger than 200 km:5 are Ceres-like, 6 Pallas-like, 5 are Themis/Cybele-like, 4 are too noisy to tell.
- Three of the 4 largest Ccomplex asteroids are Ceres-types

Object	SMASS class	3-μm type
1 Ceres	С	Ceres
2 Pallas	В	Pallas
10 Hygiea	С	Ceres
704 Interamnia	В	Ceres
52 Europa	С	Ceres?
511 Davida	С	Pallas
31 Euphrosyne	Cb	Themis/Cybele
88 Thisbe	В	Themis/Cybele?
324 Bamberga	CP (Tholen)	Themis/Cybele
451 Patientia	C (Tholen)	Ceres

Ten largest C-complex asteroids

- Use band depths at 2.95 and 3.2 as proxy for band shape
- Removed linear continuum
 2.3-3.5 μm
- Pallas-types form linear trend, others split off
- Consistent with CC meteorites, minerals
- Non-Pallas types in direction of ice

- Use band depths at 2.95 and 3.2 as proxy for band shape
- Removed linear continuum
 2.3-3.5 μm
- Pallas-types form linear trend, others split off
- Consistent with CC meteorites, minerals
- Non-Pallas types in direction of ice

- Use band depths at 2.95 and 3.2 as proxy for band shape
- Removed linear continuum
 2.3-3.5 μm
- Pallas-types form linear trend, others split off
- Consistent with CC meteorites, minerals
- Non-Pallas types in direction of ice

- Use band depths at 2.95 and 3.2 as proxy for band shape
- Removed linear continuum
 2.3-3.5 μm
- Pallas-types form linear trend, others split off
- Consistent with CC meteorites, minerals
- Non-Pallas types in direction of ice

Caveats

- Error analysis not yet done
- Repeat observations (7x Cybele, 6x Themis, Hygiea, Pallas)
- Sample likely biased in unknown ways
- Imperfect continuum removal
- Implicit assumption that similar spectra means similar composition, though more modeling still necessary

On the plus side, Karl Rove isn't doing the statistical analysis for me

- SOFIA transmission MUCH better at λ of interest
- Obtain useable data for first time from majority of "water gap"
- Allow direct comparisons to lab spectra tying meteorite reflectance to composition
 - Best meteorite analog
 - Better spectral modeling
 - Coexistence of ice and phyllosilicates?

Gray overlay: Mauna Kea model transmission 1.2 mm PW, airmass 1.0

- SOFIA transmission MUCH better at λ of interest
- Obtain useable data for first time from majority of "water gap"
- Allow direct comparisons to lab spectra tying meteorite reflectance to composition
 - Best meteorite analog
 - Better spectral modeling
 - Coexistence of ice and phyllosilicates?

Beck et al. (2010)

- SOFIA transmission MUCH better at λ of interest
- Obtain useable data for first time from majority of "water gap"
- Allow direct comparisons to lab spectra tying meteorite reflectance to composition
 - Best meteorite analog
 - Better spectral modeling
 - Coexistence of ice and phyllosilicates?

Beck et al. (2010)

- SOFIA transmission MUCH better at λ of interest
- Obtain useable data for first time from majority of "water gap"
- Allow direct comparisons to lab spectra tying meteorite reflectance to composition
 - Best meteorite analog
 - Better spectral modeling
 - Coexistence of ice and phyllosilicates?

Fig. 7. Relative peak heights of 3520 and 3600 cm⁻¹ normalized to those of 3400 cm⁻¹ (a) and those of 3670 and 3692 cm⁻¹ to 3685 cm⁻¹ (b). Peak heights are estimated after baseline correction. CR and CM chondrites are distinguishable from the other chondrite classes.

SOFIA time granted

- 2 hours total on FLITECAM
- 4 targets
 - Ceres 2x678 sec
 - Pallas 2x1182 sec
 - Vesta 2x552 sec
 - Bamberga 2x1182 sec
- 30 sec exposures x N cycles
- A2, C2 grisms

- Ceres
 - Better spectral modeling
 - Dawn support
- Pallas
 - Direct comp to CCs
 - Most common asteroid type
- Vesta
 - Dawn support
 - Whole-disk data
- Bamberga
 - Water ice?
 - Look for OH

- Geophysical modeling
 - What do surface compositions tell us about interiors?
- Continued observations
 - Family observations
 - Relationship to lunar OH?
- Future mission targets?
 - Ceres in 2015
 - 1999 RQ36

- Geophysical modeling
 - What do surface compositions tell us about interiors?
- Continued observations
 - Family observations
 - Relationship to lunar OH?
- Future mission targets?
 - Ceres in 2015
 - 1999 RQ36

Yet-unpublished data

- Geophysical modeling
 - What do surface compositions tell us about interiors?
- Continued observations
 - Family observations
 - Relationship to lunar OH?
- Future mission targets?
 - Ceres in 2015
 - 1999 RQ36

Mars Phoenix image

- Geophysical modeling
 - What do surface compositions tell us about interiors?
- Continued observations
 - Family observations
 - Relationship to lunar OH?
- Future mission targets?
 - Ceres in 2015
 - 1999 RQ36

Summary

- OH- and water-bearing objects dominate asteroid belt
- A variety of hydrated mineralogies are present on asteroids
- Ceres-like spectra (brucite+carbonate+clays?) are found on most of the largest asteroids
- Some evidence of shallow absorptions on NEOs: solar wind or impactor contamination?
- SOFIA will provide unique, critical data in "water gap"