A map of D/H on Mars using EXES aboard Sofia

```
T. Encrenaz<sup>1</sup>, M. Richter<sup>2</sup>, C. DeWitt<sup>2</sup>, T. Greathouse<sup>3</sup>,
T. Fouchet<sup>1</sup>, F. Montmessin<sup>4</sup>, F. Lefèvre<sup>4</sup>, B. Bézard<sup>1</sup>,
S. Atreya<sup>5</sup>, M. Case<sup>2</sup>, N. Ryde<sup>6</sup>

<sup>1</sup> LESIA, Paris Observatory, F

<sup>2</sup> University of California Davis, USA

<sup>3</sup> SwRI, San Antonio, TX, USA

<sup>4</sup>LATMOS, IPSL, Paris, F

<sup>5</sup> University of Michigan, USA

<sup>6</sup> Lund Observatory, Lund, Sweden
```

EXES aboard SOFIA

EXES: Echelon Cross-Echelle spectrograph

- PI: M.J. Richter, UC Davis, CA

- λ range: 4.5 - 28.3 μm,

- $R = 10^5$, 15000, 4000

- Heritage: TEXES at IRTF

- First operation: 2014

SOFIA: A Stratospheric Observatory for Infrared Astronomy (NASA/DLR)

- Boeing 747 + 3.5m telescope

- First operation: 2010

Why study D/H on Mars?

- An indicator of the loss of water over the history of Mars, through differential escape
- -> A diagnostic of past water content
 - Owen et al. 1988: D/H = 6 SMOW
- An indicator of the water cycle through fractionation due to differential condensation processes
- -> A diagnostic of the water cycle and exchange with surface reservoirs
 - Montmessin et al. Icarus 2005; Villanueva et al. Science 2015

A map of D/H on Mars with EXES/SOFIA

- Objective: Simultaneous mapping of H₂O and HDO in the thermal infrared (7 μm)
- First commissioning flights: April 7-8, 2014
- Mars observation: April 8, 5:00-5:30 UT
 - Diameter: 15.3 arcsec (near opposition)
 - Season: Ls = 113°(near NorthernSummer solstice)
 - <u>Spectral range:</u> 1383-1390 cm⁻¹ (7.19 7.23 μm)
 - Resolution: 0.028 cm^{-1} (R = 5 10^4)

The EXES spectrum of Mars (disk averaged)

The EXES spectrum of Mars (disk averaged)

Determination of the FWHM using CO₂ transitions

Retrieval of H₂O and HDO maps

- Mixing ratios of H₂O and HDO (vs CO₂) are measured from the line depth ratios of weak transitions vs weak CO₂ lines
- The HDO/H₂O ratio is measured from the line depth ratio of HDO and H₂O lines
- This method allows to eliminate, to first order, effects due to thermal structure and geometry
- This method has been previously used to study and monitor H₂O₂ & HDO on Mars (Encrenaz et al. PSS 2012, A&A 2015), and SO₂ & HDO on Venus (Encrenaz et al. A&A 2012, 2013)
- In the case of EXES, the main question is how to cancel properly the terrestrial atmospheric absorption
- Results of this study have been published in A&A (2016)

Removal of the terrestrial contribution

- At 1386.5-1387.5 cm⁻¹, the spectrum is dominated by terrestrial absorption due to H₂O
- The terrestrial absorption is modelled for a best fit of this part of the spectrum
- The inferred terrestrial absorption is used to correct the 1388-1390 cm⁻¹ region used for D/H retrieval
- Terrestrial atmospheric model:
 - Z = 11 km
 - Ps = 0.17 bar, T = 185 K
 - $-[H₂O] = 8 \cdot 10^{-5} (11 \text{ km}), 2 \cdot 10^{-5} (16 \text{ km}), 5 \cdot 10^{-6} (21 \text{ km})$

Retrieved transmission function from the terrestrial atmosphere

Line depth maps

Best fits of Northern and Southern regions

Normalized radiance

Northern region

$$H_2O = 375 + /- 64 \text{ ppmv}$$

 $HDO = 550 + /- 17 \text{ ppbv}$

$$D/H = 4.7 (+0.8, -0.6) VSMOW$$

Southern region

$$H_2O = 125 + / - 45 \text{ ppmv}$$

 $HDO = 150 + / - 15 \text{ ppbv}$

$$D/H = 3.9 (+1.5, -0.8) VSMOW$$

Integrated disk: D/H = 4.4 (+1.0, -0.6) VSMOW

H₂0 volume mixing ratio

HDO/H₂O line depth ratio

Comparison with Villanueva et al. 2015

Ground-based, Near IR (IRTF, Keck)

Good agreement around long=200-230

But:

- EXES value is globally lower
- -EXES spatial distribution is more uniform
- -> in better agreement with VPIE model (vapor pressure isoptopic effect)

Comparison with Krasnopolsky 2015

Ground-based, near IR (IRTF)
Latitudinal variations of D/H, no mapping

- -Good agreement on latitudinal variations
- -D/H EXES data are globally slightly higher than Krasnopolsky 2015 (EXES: 4.4 VSMOW / Krasno: 3.5 VSMOW)

Comparison with TEXES and the GCM

HDO mixing ratio

EXES, Ls =113° April 8, 2014

TEXES & GCM, Ls = 96` March 1, 2014

600 (bbpx) 400 200

GCM HDO/CO₂ mixing ratio

Encrenaz et al. 2015

Good agreement except a the North pole

Conclusions and perspectives

• For Ls = 113°:

- Moderate increase of D/H from South to North (4 to 5 VSMOW)
- In agreement with theoretical models based on VPIE
- Mean value over the disk: 4.4 (+1.0,-0.6) VSMOW
- In global agreement with previous studies, both globally and locally
- Implies less early water content than inferred by Villanueva
 +15

Future work:

- Observe maps of D/H for various seasons with EXES, for a more complete determination of the global D/H enrichment
- Two observations planned with SOFIA in March 2016

Thanks to the EXES and SOFIA Teams!