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Qutline:

* Disk Mass Evolution — Observational Studies
* Disk Dispersal and Photoevaporation — Theory

» Theoery-vs- Observations (future with SOFIA)
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Disk Evolution and Lifetimes

* Disk contains gas (mostly H) and solids (dust, a = um), gas not well probed.
e Dust readily emits (but is only ~¥1% of mass).

e Dust disk evolves, grains grow, settle, amorphous to crystalline

Chiss 0 Class |
| I ' |
=L Cold Black Body =l
# 2
— - Black Body
1 i N 2
1 10 100 1000 12 10
A () & (pm)
Class [l Class 11
LR | LI | !
z| 3
* B
- =
12 10 100
L (pm) & (pm)

July 25, 2012 SOFIA-teletalk



Disk Evolution and Lifetimes

* Disk contains gas (mostly H) and solids (dust, a = um), gas not well probed.
e Dust readily emits (but is only ~¥1% of mass).

e Dust disk evolves, grains grow, settle, amorphous to crystalline, structure
Fukugawa et al. 2004 Image: D. Hines
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Disk Evolution and Lifetimes

(Hillenbrand 2008)
100% Dust disk lifetimes ~ 5 Myrs.
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Disk Evolution and Lifetimes

(Hillenbrand 2008)
100% Lo Dust disk lifetimes ~ 5 Myrs.
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Disk Evolution and Lifetimes

(Hillenbrand 2008)
100% Dust disk lifetimes ~ 5 Myrs.
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Disk Evolution and Lifetimes

(Hillenbrand 2008)
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Disk Evolution and Lifetimes

(Hillenbrand 2008)
100% Lo | Dust disk lifetimes ~ 5 Myrs.
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Disk Evolution and Lifetimes

(Pascucci et al. 2006)
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Dust disk lifetimes ~ 5 Myrs.

Gas in (1-40AU) region has
lifetimes less than ~5-30Myr.
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Disk Evolution and Lifetimes

Zuckerman, Forveille & Kastner 1995

tion of the massive gaseous envelope in ~10’ yr (refs 1-5). But
how and when the gas of the solar nebula dissipated, and how
this compares with the predicted timescale of gas-giant formation,
remains unclear®’, in part because direct observations of circum-
stellar gas have been made only for stars either younger or older
than the critical range of 10°~107 yr (refs 8-15). Here we report
observations of the molecular gas surrounding 20 stars whose ages
are likely to be in this range. The gas dissipates rapidly; after a
few million years the mass remaining is typically much less than
the mass of Jupiter. Thus, if gas-giant planets are common in the
Galaxy, they must form even more quickly than present models
suggest.
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Dust disk lifetimes ~ 5 Myrs.

Gas in (1-40AU) region has
lifetimes less than ~5-30Myr.

CO observations of young

disks; inferred lifetimes
~ 10 Myrs
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Disk Evolution and Lifetimes

Zuckerman, Forveille & Kastner 1995

tion of the massive gaseous envelope in ~10’ yr (refs 1-5). But
how and when the gas of the solar nebula dissipated, and how
this compares with the predicted timescale of gas-giant formation,
remains unclear®’, in part because direct observations of circum-
stellar gas have been made only for stars either younger or older
than the critical range of 10°~107 yr (refs 8-15). Here we report
observations of the molecular gas surrounding 20 stars whose ages
are likely to be in this range. The gas dissipates rapidly; after a
few million years the mass remaining is typically much less than
the mass of Jupiter. Thus, if gas-giant planets are common in the
Galaxy, they must form even more quickly than present models
suggest.

Dust disk lifetimes ~ 5 Myrs.

Gas in (1-40AU) region has
lifetimes less than ~5-30Myr.

CO observations of young

disks; inferred lifetimes
~ 10 Myrs

Dust disks ~ 5Myrs, Gas disks ~ 5-30Myrs
ENTIRE DISK IS DISPERSED
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July 25, 2012

DISK DISPERSAL THEORY
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Disk Dispersal

1.

July 25, 2012

Viscous Evolution
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Disk Dispersal

1. Viscous Evolution — Long timescales

2. Stell ind Not important,
. Stellar winds e A it~ M.

(Matsuyama, Johnstone &
Hollenbach 2010)
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Disk Dispersal

1. Viscous Evolution — Long timescales

2. Stellarwinds

3. Close stellar encounters and tidal stripping

Before After

Need very close encounters, only possible in
very dense star clusters, hence cannot be a
general mechanism.
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Disk Dispersal

1. Viscous Evolution — Long timescales

2. Stellarwinds

3 o ' | tidal strioo]

4. Planet Formation — May deplete solids, but gas dispersal needed
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Disk Dispersal

1. Viscous Evolution — Long timescales

2. Stellarwinds

3 gI | ” | l . l " FUV flow
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Viscosity
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4. Planet Formation — May deplete §

5. Photoevaporation

- Disk surface is irradiated by high energy photons (EUV, FUV, X-rays).
- Gas is heated to thermal speeds that exceed escape speeds.

- Mass is lost from disk resulting in photoevaporation.

- Gravitational radius R; ~ GM/c .2~ 7 AU for 10*K gas for a 1M, star

- Angular momentum support gives R, ~ 0.1-0.2 R,

crit

July 25, 2012 SOFIA-teletalk



Disk Dispersal

|:> 1. Viscous Evolution — Long timescales ~ -Mainly inner disk, ~ 50% of mass?

2. Stellarwinds

3 o ! | tidal strioo]

> 4. Planet Formation — Gas dispersal needed - Some fraction (?) of solid mass

|:> 5. Photoevaporation - Mainly outer disk, ~50% of mass?

- Disk surface is irradiated by high energy photons (EUV, FUV, X-rays).
- Gas is heated to thermal speeds that exceed escape speeds.

- Mass is lost from disk resulting in photoevaporation.

- Gravitational radius R; ~ GM/c .2~ 7 AU for 10*K gas for a 1M, star

- Angular momentum support gives R_;; ~ 0.1-0.2 R,
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Disk Dispersal: Photoevaporation

* First applied to disks in clusters near the high radiation field of massive OB stars.
(Hollenbach et al. 1994)

External irradiation of disks by a
nearby massive O star

Protoplanetary Disks in the Orion Nebula
Hubble Space Telescope « WFPC2

NASA, J. Bally (University of Colorado), H.Throop (SWRI), and C.R. O'Dell (Vanderbilt University)
STScl-PRC01-13
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Disk Dispersal: Photoevaporation

* First applied to disks in clusters near the high radiation field of massive OB stars.

(Hollenbach et al. 1994)

External irradiation of disks by a
nearby massive O star

1 O O T T T T e
L e~
—~ @
i =" e ¢
- [ J
= e o * b * °
g -7 ¢ °
o1 0E °, e Q3 o o -
— 1.U0Fe (4 °
— - * ¢ Q?. o % o
o -
= 1 v
[ J %. [ J @
Protoplanetary Disks in the Orion Nebula @ ? %9
Hubble Space Telescope « WFPC2 0.1 el M A | 9 AP | .
NASA, J. Bally (University of Colorado), H.Throop (SWRI), and C.R. O'Dell (Vanderbilt University) 0.0 1 O. 1 O 1 .OO
STScl-PRC01-13

Distance from 8'C [pc]
(Mann & Williams 2011)

July 25, 2012

SOFIA-teletalk

21



Disk Dispersal: Photoevaporation

* First applied to disks in clusters near the high radiation field of massive OB stars.
(Hollenbach et al. 1994)

* Young, low-mass stars are very UV and X-ray luminous, central star can also
photoevaporate disk. (Alexander et al. 2006, Gorti & Hollenbach 2008, Ercolano et al. 2009)

G M,

2
Cs

104 M,
~ 10AU ( B ) (IM ) Higher Temperatures - Greater Escape Speeds
@



Disk Dispersal: Photoevaporation

* First applied to disks in clusters near the high radiation field of massive OB stars.
(Hollenbach et al. 1994)

* Young, low-mass stars are very UV and X-ray luminous, central star can also
photoevaporate disk. (Alexander et al. 2006, Gorti & Hollenbach 2008, Ercolano et al. 2009)
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* Heating by Extreme Ultraviolet (EUV) (hv > 13.6eV) photons

* EUV photoevaporation of disk around central star (e.g., Shu et al 1993,
Hollenbach et al. 1994, Johnstone et al. 1998, Richling & Yorke 2000)



Disk Dispersal: Photoevaporation

* First applied to disks in clusters near the high radiation field of massive OB stars.
(Hollenbach et al. 1994)

* Young, low-mass stars are very UV and X-ray luminous, central star can also
photoevaporate disk. (Alexander et al. 2006, Gorti & Hollenbach 2008, Ercolano et al. 2009)
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* Heating by Extreme Ultraviolet (EUV) (hv > 13.6eV) photons

* EUV photoevaporation of disk around central star (e.g., Shu et al 1993,
Hollenbach et al. 1994, Johnstone et al. 1998, Richling & Yorke 2000)

* Combined effects of EUV radiation from central star and viscosity
“Ultraviolet switch” scenario (Clarke et al. 2001) tg g, = 20 Myrs



Disk Dispersal: Photoevaporation

* First applied to disks in clusters near the high radiation field of massive OB stars.
(Hollenbach et al. 1994)

* Young, low-mass stars are very UV and X-ray luminous, central star can also
photoevaporate disk. (Alexander et al. 2006, Gorti & Hollenbach 2008, Ercolano et al. 2009)

G M,

2
Cs

104 M,
~ 10AU ( B ) (IM ) Higher Temperatures - Greater Escape Speeds
@

* Heating by Extreme Ultraviolet (EUV) (hv > 13.6eV) photons

* EUV photoevaporation of disk around central solar-type star (e.g., Shu et al 1993,
Hollenbach et al. 1994, Johnstone et al. 1998, Richling & Yorke 2000)

* Combined effects of EUV radiation from central star and viscosity
“Ultraviolet switch” scenario (Clarke et al. 2001) tg g, = 20 Myrs

 Alexander et al. (2006) considered direct EUV illumination of gap once it forms,
and disk disperses rapidly after gap opens. (High EUV fluxes, low disk masses)



Disk Dispersal: Photoevaporation

FUV and X-rays are important for disk photoevaporation
(Ercolano et al. 2008, 2009, Gorti & Hollenbach 2008, 2009, Gorti, Dullemond & Hollenbach 2009, Owen et al.
2010 2012)

- FUV and X-rays have longer penetration depths and are incident on the disk earlier
in its evolution.

- FUV and X-rays are measured, can be high. FUV initially comes mainly from
accretion, and rates are high at early epochs.

For young solar-type stars,

* L, ~10%30 erg s (~ 100 higher than present-day sun)(Chromosphere)

* Lyy ~ Unknown! Estimates range from @, ~ 10%0% s1 (Alexander, Clarke & Pringle 2005)
If chromospheric, 102830 erg s, g, ~ 10042 571

* Ly ~ 10232 erg st (~ 10% higher than present-day sun) (Accretion shocks +
Chromosphere)
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Disk Dispersal: Photoevaporation

> Photoevaporative flows begin at the disk surface, depend sensitively on gas
density and temperature.

> FUV/X-ray heated gas can be ~ 100 - 5000 K, complex gas chemistry and
many different coolants.

> Need to solve accurately for gas structure.

> Detailed gas disk structure models needed.



Disk Evolution Models

Disk surface density evolution is studied.

8):_38
ot r or
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Instantaneous local

Photoevaporation rate

- acf./QK dl:Ie to EUV, FUV, X-rays,
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Kinematic viscosity

Photoevaporation included as a sink term.
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Disk Evolution Models

Disk surface density evolution is studied.

82_38
ot r or

(ﬁ :—r (uzﬁ)) — Tpe(r, 1)

Instantaneous local

Photoevaporation rate

due to EUV, FUV, X-rays,
}:pe a (nc)

Kinematic viscosity

p = acf./QK

Photoevaporation included as a sink term.

100

Height (AU}

&0

At every timestep

- Solve for n(r,z),
- T(rz)

from >(r,t)

Dust model with grain size distribution, radiative transfer via 1+1D model
Gas heating and cooling, radiative transfer — thermal balance solved with chemistry
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Disk Evolution Models

Viscosity, Photoevaporation by EUV, FUV and X-rays
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Disk Evolution Models

Viscosity, Photoevaporation by EUV, FUV and X-rays
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Disk Evolution: - Key Questions Remain

* How does the disk surface density distribution evolve?
— Transition disks with inner dust holes, e.g. TW Hya
— Planet formation, presence of gas, Jupiters vs. Neptunes
— Planetary dynamics, migration, orbit circularization

* Disk dispersal — Photoevaporation mass loss rates?
— Accretion and photoevaporation, their fractions
- FUV, EUV or X-rays?
— Nature of dispersal, inside-out or outside-in
— Wind diagnostics needed

* Disk lifetimes — How long and what do they depend on?

— Stellar mass, radiation, T Tauri stars and Herbig AeBe stars
— Disk properties, initial angular momentum, viscosity, dust
— Planet formation, any feedback?
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DISK DISPERSAL: Future Observations

SOFIA-teletalk

33



July 25, 2012

DISK DISPERSAL: Future Observations

» Disk Mass Evolution
» Photoevaporation Diagnostics
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Disk Mass/Surface Density Evolution

(Gorti & Hollenbach 2008)

An “optimistic” model
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Disk Mass/Surface Density Evolution

(Meeus et al. 2012) GASPS
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Disk Mass/Surface Density Evolution
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Why is this interesting from the disk dispersal point of view ?
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July 25, 2012

— Ol traces bulk of the gas mass in the disk

— Gas evolution in the planet forming regions (1-100AU)
— SOFIA will resolve line (background contamination)

— HAeBes have similar disk lifetimes as T Tauris
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Disk Dispersal Diagnostics

Photoevaporative mass loss rates? Depends on the dispersal agent,
qualitatively different evolutionary scenarios.

»EUV — Disk evolves mainly by viscosity for a long period. Disk primarily accreted.
However, EUV flux unknown. dM/dt~?? (~ 1010 M, yr1)

» X-rays — High mass loss rates predicted, disk again evolves viscously until gap
opening. Disk disperses inside-out. (Different models differ.)
X-ray flux is well measured. (dM/dt ~ 108 M, yr 1)

» FUV — Qualitatively different evolution — Neutral flows dominated by mass loss in the
outer disk. Expected dM/dt ~ 10° M, yr L. Predict disk truncation.
Gap formation (or not) depends on level of chromospheric FUV and X-rays.
FUV dominates disk dispersal for intermediate mass stars.

Different implications for planet formation in disk




Disk Dispersal Diagnostics

(Pascucci et al. 2011)
[Nell] blueshift seen

4

Orginal 3 * Models predict equally strong Arll emission.

Mirror

* Velocity information with EXES — location of
emitting gas.

Norm to peak

* Nell/Arll ratios may distinguish between EUV
X-rays photoevaporation.

Original-Mirror

* Blue-shifts will provide evidence of wind.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* Possible blue-shifts in Ol63um?

CSCha

Flux [Jy]

| (Pascucci & Sterzik 2009)
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Summary

* Disk gas mass evolution is not well understood: Disk lifetimes ~ 107 yrs and comparable
to dust disk lifetimes of a few Myrs. Planets must form on these timescales.

* Photoevaporation and viscous evolution may explain disk evolution qualitatively,
with lifetimes ~ few Myrs for low mass stars and shorter for intermediate to high
mass stars. Mass loss rates depend on whether flows are EUV, FUV or X-ray driven.

e Gas emission lines will provide valuable information on how disks evolve and get
dispersed.

* SOFIA can detect [OI]63um, H, rot. lines, [Nell]12.8um, [Arll]]7um and other lines, and
high resolution observations will determine gas kinematics.

* Dust continuum — (not discussed) SOFIA fills important niche FIR region which can
discriminate between degenerate dust configurations (SED-matching.)



