

Planetary Science with SOFIA

William T. Reach
SOFIA Community Day
University of Arizona
May 2016

Quick tour of possibilities

Terrestrial Planets

Venus: atmosphere composition, dynamics (winds, temporal variation) [EXES]

Mars: atmosphere composition (methane, D/H); dynamics

Jupiter

Neptune

Convection in tropsphere (FORCAST), convection in stratosphere (EXES), weather (FORCAST), atmosphere chemistry including exosphere (GREAT, EXES), heat output (FORCAST, FIFI LS, HAWC+)

Moons

Titan's spectrum observed with the Infrared Space Observatory in 1997

WAVENUMBER (micron)

Titan atmosphere [EXES, GREAT]

prebiotic molecules out-of-equilibrium species tracing hot chemistry

- Moons with subsurface oceans
 - Radiometry for energy balance [FORCAST, FIFI LS, HAWC+]
 - temporal and phase-angle changes due to surface features ["]

Dwarf Planets

- Occultations [HIPO/FLIPO] for diameters, rings, atmosphere search, haze
- Radiometry [FORCAST]: diameter, thermal properties
- Surface composition [FORCAST & FLITECAM grism]

Comets

- dust and gas composition from outgassing [GREAT, FORCAST]
- mineralogy (Fe/Mg silicates) [FORCAST grism]
- origin of terrestrial water (D/H, ortho/para) [GREAT]

More details on a few potential projects

- Visibility conditions on mid-Feb2017:
 - 40 degree solar elongation
 - 40" angular size
 - but only visible in early evening for <1 hr
- Molecules already observed with TEXES
 - CO₂, HDO and SO2
 - Detectability of lines depends critically on Doppler shift

- Other molecules remain uncharacterized
 - no access to infrared outside Earth's atmosphere, while Venus has many of same gases as Earth
 - Isotopic ratios trace chemical history; why were Venus' oceans lost?
- Dynamics
 - Vertical distribution of SO, SO₂ related to cycling
 - Winds
 - Factor of 5-10 temporal variation in SO₂ (Encrenaz et al 2012)
- CYCLE 4 project accepted
 - Constantine Tsang (SWRI) "Venus Atmosphere: D/H Ratio from H2O and HDO Measurements"

Jupiter's Stratosphere and Troposphere

SOFIA spectroscopic slits were stepped across the disk of Jupiter to make spectral maps.

With EXES at high spectral resolution: lib-brightened, narrow, stratospheric H₂ line.

With FORCAST at moderate resolution, measure pressure-broadened H₂

Para/Ortho state ratio, paired with CH₄ temperature, measures mixing rate in the atmosphere, because the rate of para/ortho conversion is

Jupiter's Para-H2 Distribution from SOFIA/FORCAST and Voyager/IRIS 17-37 µm Spectroscopy (Fletcher w/Reach)

- Mid-infrared spectral maps of Jupiter for ortho/para H₂
- Equatorial/high-lat para fraction is below/above equilibrium value
- Low-para H2 from depth is upward transported to equator
- Low-para H2 rapidly equilibrates on aerosols at high-latitude, and sinks back

Submitted to Icarus

Pluto's Atmosphere

2015 Jun 29 event

A. Bosh (Monday 4pm)

 Haze in Pluto's atmosphere: Results from SOFIA and groundbased observations of the 2015 June 29 Pluto occultation

SOFIA Spectrophotometry of Comet C/2012 K1 (Pan-STARRS) (Woodward w/Reach)

- Oort cloud comet, pristine dust Wavelength (micron)
- Weak silicate feature (in contrast to Hale-Bopp), carbon-rich

20\$8ApJ...809..181W

Guest Investigator	Proposal Title	Instrument
Glenn Orton (JPL)	17- to 37-micron Photometry and Spectroscopy of Uranus and Neptune	FORCAST
Glenn Orton (JPL)	Jupiter's Stratospheric HCN, Hydrocarbon and Temperature Fields	EXES
Charles Woodward (U. Minn.)	A Tale of Two Comets - The FORCAST Story	FORCAST&FPI+
Kate Su (U. Arizona)	Mineralogical Evolution in Extreme Debris Disks	FORCAST
Therese Encrenaz (Paris Obs)	A map of D/H on Mars using EXES aboard SOFIA	EXES
Andrew Rivkin (JHU/APL)	Characterization of OH and H2O in Asteroids	FLITECAM
Carl Melis (UCSD)	Unusual material orbiting the dustiest main sequence A-type stars	FORCAST
Joseph Adams (SOFIA/USRA)	The Dust Production Rate in the Fomalhaut Debris Disk	FORCAST&HAWC +
Kate Su (U. Arizona)	Structure of the Iconic Vega Debris Disk	FORCAST
Constantine Tsang (SWRI)	Venus Atmosphere: D/H Ratio from H2O and HDO Measurements	EXES
Shohei Aoki (IAPS Italy)	Verification of CH4 on Mars and investigation of its temporal and spatial variations by SOFIA/EXES	EXES
Miriam Rengel (MPIfSS)	Investigating the composition of Titan's stratosphere with SOFIA: time variability & intriguing unidentified signatures	FIFI-LS
Inseok Song (U. Georgia)	Characterizing the Warm Disk with FORCAST Photometry for the Dustiest Debris Disk	FORCAST
Juergen Wolf (DSI/SOFIA)	Stellar Occultations by Trans-Neptunian Objects and Centaurs	FPI+

- Rate should be slower than 1"/s
- "easiest" tracking for visibly-bright objects (V<14), better than 1"
- Invisible targets possible using offset guiding on celestial source, but this is a not-well-tested mode

Elevation limits and Sunrise/Sunset

- The telescope stays in the elevation range 22-58 degrees
- Absolute minimum solar elongation is therefore 22 degrees
 - Practical limit of 25 degrees to allow time to acquire & observe
- We have flight rules to prevent sunlight on the telescope
- Observations right after sunset are possible
 - No time for initial calibration leg, so not best for 1st flight of series
 - Takeoff before sunset, door open at 10,000 feet, get on target
- Observations up to sunrise are possible but have risk
 - Need to close door and prepare alternate landing scenario such that a potentially "stuck open" door is pointed away from the Sun

Moons

Keeping main planet off the array (or slit) is highly desirable

Horizons and XEphem are good for visualizing

orientations

- View from Spot
- EXES Medium
 - X-dispersed slits are short
- FLITECAM
 - Horizontal slit
- FORCAST
 - Vertical slit
- FIFI LS
 - Blue channel ½ area

