Infrared Observations of the Quintuplet Proper Members with SOFIA/FORCAST

SOFIA/FORCAST 25, 31, & 37 µm

Matt Hankins (Cornell University)

Collaborators: R. M. Lau (JPL/Caltech), M. R. Morris (UCLA), J. Sanchez -Bermudez (MPIA), J. U. Pott (MPIA), J. D. Adams (SOFIA/USRA), and T. L. Herter (Cornell University)

SOFIA community Tele-Talk

September 7, 2016

Outline

- Background & Motivation:
 - What are the Quintuplet Propter Members (QPMs) and why are they so interesting?
- This work:
 - Observations of the QPMs with SOFIA/FORCAST at 19.7, 25.2, 31.5, 37.1 μm
 - Characterizing the dust emission from the QPMs
 - Develop models to constraining the luminosities & dust masses of the QPMs
 - Comparing the QPMs with the population of similarly classified objects
- Future work:
 - Prospective observations with SOFIA & VLT

FORCAST

- Dual-Channel 256x256
 Camera with Si BIB arrays
 - BIB: Blocked-Impurity-Band
 - 5-25 μm with Si:As array
 - 25-38 μm with Si:Sb array
- 3.2×3.2 arcminute FOV
 - Plate scale: 0.768"/pixel
- Selectable filters over the 6 37 µm range

The Quintuplet Proper Members (QPMs)

- Characteristics:
 - Bright mid-IR sources $(L_{IR} \sim 10^5 L_{sun})$
 - Cool characteristic dust temperatures: 400-1000 K
 - Near featureless near-IR spectrum
- Uncertain Classification: YSO?, Evolved Star?, Other?

The Quintuplet Proper Members (QPMs)

- Characteristics:
 - Bright mid-IR sources $(L_{IR} \sim 10^5 L_{sun})$
 - Cool characteristic dust temperatures: 400-1000 K
 - Near featureless near-IR spectrum
- Uncertain Classification: YSO?, Evolved Star?, Other?

Dusty 'Pinwheels' in the Quintuplet Cluster (Tuthill+ 2006)

The Anatomy of a Dusty 'Pinwheel' Star

- Binary Wolf-Rayet+O/B systems
 - Carbonaceous Chemistry
 - High Densities in windwind collision zone
 - Dust formed and shielded in wake of companion's orbit
 - 'Pinwheel' traced by binary orbit

Tuthill+ 1999

Evolution of Massive Stars: Binary Influence (Sana+ 2012)

- >70% of all massive stars are expected to exchange mass with a companion
 - Mass exchange will effect stellar luminosity & massloss rates
 - Binary interaction greatly impacts the evolution of massive stars!

Back to the QPMs...

- Goals of Study:
 - SED Models
 - Dust Temperatures
 - Luminosities
 - Dust Masses
 - High spatial resolution imaging
 - Study Morphology
- Improvements over previous studies:
 - Improved wavelength coverage
 - Better spatial resolution

Constructing SEDs: Near-IR Variability of Dusty Wolf-Rayet Stars

- Variability is a sign of eccentric binary system with variable dust production
 - Q2 is the only QPM that shows significant near-IR variability

DUSTY Models of QPMs

Best-Fit Model Parameters

Best-fit DUSTY Model Parameters							
ID	T_0 (K)	$\alpha \ (r^{-\alpha})$	$\mathrm{M}_d~(\mathrm{M}_\odot)$	$Log(L_{\rm IR}/L_{\odot})$	$Log(L_{\star}/L_{\odot})$	$L_{\rm IR}/L_{\star}$	
Q1	800 ± 50		$3.8^{+1.1}_{-1.5} \times 10^{-4}$	4.9	5.2	~ 0.5	
Q2	650 ± 50	2	$1.3^{+0.6}_{-0.5} \times 10^{-4}$	5.1	5.7	~ 0.25	
Q3	$750{\pm}50$	2	$2.4^{+1.3}_{-0.8} \times 10^{-5}$	4.9	5.5	~ 0.25	
Q9	750 ± 80	-1.5 ± 0.5	$1.3^{+0.8}_{-0.4} \times 10^{-3}$	5.0	5.0	~ 1.0	

- Q9 and Q1 show departures from a constant mass loss rate
- Q9 and Q1 have large dust covering fractions compared to expected value for disks
- Dust reservoir present in Q9 is quite massive!

Morphology of the QPMS: The Extended Nature of Q9

Gemini/TReCs Observations of the QPMs

High-Resolution Gemini/TReCs SAM

Observations

Constraining Dust Sizes in the QPMs

Best-fit Gaussian Model							
Parameters	$\mathrm{Q}2~8.8\mu\mathrm{m}$	Q2 $11.7 \mu m$	$\mathrm{Q9~8.8}\mu\mathrm{m}$	Q9 11.7 μm	Q1 $8.8 \mu \mathrm{m}$	Q1 11.7 μm	
FWHM [mas]	105 ± 4.45	128 ± 7.29	58 ± 6.39	88±6.02	73 ± 3.48	126 ± 5.01	
V_0^2 (zero-spacing)	$0.81 {\pm} 0.01$	$0.69{\pm}0.02$	$0.89 {\pm} 0.01$	$0.71 {\pm} 0.01$	$0.9 {\pm} 0.01$	0.78 ± 0.01	

- DUSTY provides measurements of the expected physical size of emitting region for each model (dependent on dust grain size):
 - Can exclude grains as small as 0.01 µm for Q1 and Q2
 - Poor fits to the small & large size scales measured for Q9
 - Likely an issue with optical depth effects

Characterizing the Sources

Best-fit DUSTY Model Parameters							
ID	$\rm Log(L_{\rm IR}/L_{\odot})$	$Log(L_{\star}/L_{\odot})$	$L_{\rm IR}/L_{\star}$	$M_d (M_{\odot})$	$\dot{\rm M}~({\rm M}_{\odot}/{\rm yr})$		
Q1	4.9	5.2		$3.8^{+1.1}_{-1.5} \times 10^{-4}$	9.5×10^{-4}		
Q2	5.1	5.7	~ 0.25	$1.3^{+0.6}_{-0.5} \times 10^{-4}$	$3.2{ imes}10^{-4}$		
Q3	4.9	5.5	~ 0.25	$2.4^{+1.3}_{-0.8} \times 10^{-5}$	6.0×10^{-5}		
Q9	5.0	5.0	~ 1.0	$1.3^{+0.8}_{-0.4} \times 10^{-3}$	3.2×10^{-3}		
			,				

- Stellar luminosities are consistent with carbon Wolf-Rayet (WR) stars (Crowther+ 2006)
- Dust covering factors for Q1 and Q9 are larger than most dusty WR stars (~0.1; Williams+ 1987)
- Dust reservoir in Q9 is more massive than any other dusty WR star in the literature
- Estimated mass loss rates are large for typical WR stars, but the estimates are within a factor of ~3 for radio measurements of Q2 (Lang+ 2005).

Is Q9 Just an Incredibly Dusty WR Star?

• Pros:

• Classification is similar to the other QPMs which are confirmed WR stars

• Cons:

- Mass-loss mechanism may be different than other dusty WR stars
 - Large dust covering factor is inconsistent with a disk-like geometry

• Alternative Classifications:

- LBV?- Unlikely since the dust in Q9 appears purely carbonaceous (Moneti+ 2001)
- RSG?- Unlikely since the dust in Q9 isn't oxygen rich
- AGB?- Unlikely based on cluster age (~4 Myr; Leirmann+ 2012)

QPM Summary

- Q2 & Q3 have characteristics that are typical for dusty WR stars
- Q1 & Q9 show large extended structures (~1") in high-resolution mid-IR imaging
 - Also have density profiles which indicate greater mass-loss rates in the past
- Q9 is fairly atypical for a dusty WR star
 - Mass reservoir is close to an order of magnitude larger than others
 - Imaging and fitted density profile suggests the dust is oriented in shell of material from a previous high mass-loss phase
 - Large mass loss 'hiccups' are unknown in the population of dusty WR stars
 - High wind velocity in these systems (1000+ km/s) could quickly sweep away evidences of these types of past outbursts

Future Work: Following up on the QPMs

• SOFIA observations:

- HAWC+ observations to trace more of the cool dust in the QPMs
- FIFI-LS observations to better sample the FIR continuum with the chance of detecting fine-structure lines which would constrain the terminal wind velocities

VLT/VISIR observations

• Spatially resolved N & Q band observations of Q9 to study the heating & spatial extent of the nebula

Future Work: Searching for Massive Dust Reservoirs Around Other WR Stars

- Future plans to observe additional dusty WR stars with FORCAST & HAWC+ to characterize the dust reservoirs in these types of systems:
 - SOFIA's ability to observe wavelengths longer than 20 µm is invaluable to constraining the nature of warm (~100 K) dust in these kinds of sources
- Planned observations with VLT/VISIR to study the systems with better spatial resolution
 - Current program investigating WR 112 and WR 48a

Thanks For Listening!

Questions?