From AGB Stars to Aspherical Planetary Nebulae Recent Observational Highlights from the Far-IR and (Sub)mm to X-Rays Part 1

Raghvendra Sahai

JPL, California Institute of Technology

Main Collaborators: M. Morris (UCLA), C. S'anchez Contreras (IEM-CSIS, Spain),

M. Claussen (AOC/NRAO), C-F. Lee (ASIAA, Taiwan), N. Patel (CfA), Rolf Guesten (MPIfR/Bonn)

Funding: (a) NASA Astrophysics Data awards (b) HST/ STScl GO awards (c) Chandra GO awards (d) SOFIA GO awards

Outline

 (Background) The formation of Aspherical Structure in Planetary Nebulae

(note: this material covered in SOFIA teletalk on 4/27/11)

- Recent (selected) Observational Highlights
 from (sub)mm and far-IR to UV, X-Rays
 2 community-wide large projects on PNe (X-Rays, Far-IR)
- Using SOFIA/GREAT to study the 3D Structure of PNe: "Ring Nebula" NGC6720

Ordinary Stars (~1-8 Msun)

(outreach.atnf.csiro.au)

AGB phase

- Central (C+O) degenerate core, surrounded by He & H-shells (where nuclear-burning occurs), and a very large H stellar envelope
- cool (Teff < ~3000K), very luminous (~10⁴ Lsun), have dusty, spherical expanding envelopes at low speeds (~5-20 km/s), but very large mass-loss rates (upto ~10⁻⁴ Msun/yr)
- 3 chemistry types: O-rich, S-type, C-rich (C/O <1, ~1, >1)

(winds can be driven by radiation pressure on dust grains; grains drag the gas along via friction: radiative momentum L/c > ~ dM/dt x Vexp, but notable EXCEPTIONS, e.g., the Boomerang Nebula)

The Extraordinary Deaths of Ordinary Stars

- After most of the stellar envelope is lost due to mass-loss, heavy mass-loss ceases
- central star begins its post-AGB evolution (towards hotter Teff) at constant L
- ■A planetary nebula (PN) is formed when Teff~30,000K by the ionization of the molecular outflow

beamsize 0.4"x0.22" (Shinnaga et al. 2009)

Dramatic transformation in the morphology and outflow velocity (~100 km/s) of the mass ejecta during the

tranisition phase – the pre-planetary nebula (PPN) phase; process likely initiated during late-AGB phase

Circumstellar envelope of the AGB star IRC+10216 illuminated by Galactic starlight (CFHT V-band: Mauron & Huggins 2000)

CRL2688 (C-rich PPN) (Sahai et al. 1998a) The **PPN, CRL2688**, as seen in scattered light (HST, $0.6~\mu m$) Sahai+1998

Imaging Surveys: nPPNe, PPNe, and PNe

- Three morphologically-unbiased HST surveys (*using rather simple selection criteria*) have observationally bracketed the evolutionary phase over which the transition from spherical symmetry to asphericity occurs:
- 1. Young PN survey(s) (compact, [OIII]/Hα < ~1) (e.g., Sahai & Trauger 1998; Sahai 2001-04 [IAU, APN meetings], Sahai, Morris & Villar 2011)
- 2. Young PPN survey (Sahai, Morris, Sanchez Contreras & Claussen 2007)
- [stars with heavy mass-loss: OH/IR stars (maser flux > 0.8 Jy) and C-rich objects; F25 > 25 Jy, IRAS F25/F12 > 1.4 i.e., lack of hot dust AGB mass loss has stopped]
- 3. Nascent PPN survey [same as in (2), but 1 < F25/F12 < 1.4: earliest phase in PPN evolution] (Sahai et al. 2010)

Nascent PPNs (nPPNs)

45 nPPNe were imaged. 30% of these are resolved - aspherical structure is seen in 60% of the resolved objects

In **our PPN survey**, fully 50% of our sample of 52 showed resolved morphologies, all of which were aspherical. The aspherical structure in the nPPN images (generally one-sided when collimated structures are seen) is very different from that observed in normal PPNs, which show diametrically-opposed, limb-brightened lobes.

HST Survey of Preplanetary Nebulae (PPNe)

SOFIA teletalk: R. Sahai/JPL

PNs: Primary Class B (bipolar)

27% (32/117 objects)

Adapted from Sahai, Morris & Villar (2011)

Primary Class L (collimated-lobe pair)

8.5% (10/117 objects)

Adapted from Sahai, Morris & Villar (2011)

Note: closely related to class-B (but do not show pinched-in appearance where lobes join the waist region)

Primary Class M (multipolar)

20% (23/117 objects)

Adapted from Sahai, Morris & Villar (2011)

Primary Class E (elongated)

31% (36/117 objects)

Adapted from Sahai, Morris & Villar (2011)

Note: class-B, L can look like class-E due to insufficient angular resolution and unfavorable orientation

Primary Class R (round)

3.4% (4/117 objects)

Adapted from Sahai, Morris & Villar (2011)

Primary Class S (spiral-arm)

3.4% (4/117 objects)

adapted from Sahai, Morris &Villar (2011)

Classification	\mathbf{Number}^1	Fraction ¹	$Number^2$	Fraction ²			
	\mathbf{R}_{exc}	≤ 1	All Objects				
В	27	0.28	33	0.28			
M	18	0.19	23	0.20			
E	32	0.34	37	0.31			
I	6	0.063	8	0.068			
\mathbf{R}	4	0.042	4	0.034			
L	7	0.074	10	0.085			
S	2	0.021	4	0.034			
Point Symmetry							
$\mathbf{B},\ \mathbf{p}\mathbf{s}^3$	12	0.44	14	0.45			
M, ps^4	15	0.83	19	0.83			
E, ps^5	13	0.41	15	0.42			
\mathbf{ps}^4	42	0.44	53	0.45			

1 2 3 4 5

Secondary characteristics important:

(a) Point-symmetry => secular trend such as precession or wobble in the orientation of the central engine or a collimated outflow

Note: different kinds of pointsymmetry possible

- (b) **Ansae** => impact of jet on slow-moving prior wind
- (c) **Waist** => equatorial outflow or bound disk
- (d) **Inner Bubbles** => reverse shocks, very hot gas
- (e) Barrel-shaped central Regions => evolution of waist under impact from very fast wind from CSPN?

¹Number of objects in given class, and as a fraction of the total (96) for which the [OIII] λ 5007/H α flux ratio, R_{exc} ≤ 1,

²Number of all objects in given class, and as a fraction of the total sample (119)

³Number of point-symmetric objects in class B, and as a fraction of the total in class B

⁴Number of point-symmetric objects in class M, and as a fraction of the total in class M

⁵Number of point-symmetric objects in class E, and as a fraction of the total in class E

PN shapes/shaping: Primary Physical Processes (1)

Collimated (episodic) fast winds/ jets (CFWs), operating during the very late-AGB phase, interacting with round AGB circumstellar envelopes, are the <u>primary agent</u> which initiate the formation of aspherical shapes and structures (*Sahai & Trauger 1998*)

- highly collimated lobes, multipolar morphologies imply that fast outflows are probably born collimated (i.e. collimated at or very near the launch site)
- point-symmetry implies a secular trend in the orientation of the central driver of the CFWs (precession and/or wobble)
- very large momentum-excesses indicate that CFWs are not radiatively driven (e.g. Bujarrabal et al. 2002)

PN shapes/shaping: Primary Physical Processes (2)

- Dense waists seen in PPNe & PNe likely form during the late AGB phase. Huggins (2007) infers that waists and lobes formed nearly simultaneously, with waists forming a bit earlier (expansion timescales~few 100 to 1000 yr)
- (a) ionization by hot central star, (b) action of Spherical, Radiatively-Driven, Fast Wind (SRFW) (speed ~1000 km/s) from central star on the pre-shaped PPN is responsible for further morphological changes of the PN structure

Iobe structures preserve shapes/geometries (since main morphological classes same in PPNe and young PNe)

major change due to expansion/ionization of dusty waist (SFRW, hot central star): waists become brightest components, central stars become visible

Fundamental Questions

- What are the origins and properties of the CFWs (~few x100 km/s) (e.g., scalar momentum, episodicity)?
- What is the origin and properties of equatorially-dense structures, i.e., the waists (bound/expanding)? Physical mechanism is unknown possibly common envelope ejection, or Bondi-Hoyle accretion of matter from AGB wind into a disk (determination of waist masses could provide a constraint)
- Is **Binarity** the underlying cause? [can lead to CE ejection, accretion disk formation, rotation, magnetic fields]

PNe & their Central Stars (X-Ray Emission)

CHANPLANS: First systematic survey of nearby (<~1.5 kpc) PNe with radii <~ 0.4 pc

CXO Cyc 12 (570ks) +14 (670ks) (e.g., Kastner+2012)

Hot-bubble X-ray emission from NGC3242 (top) and 7009 (bottom) overlaid on HST images (Kastner+2012)

IC418

Inner-bubble in [OIII]5007 (green), Hα (red) HST image (SMV11)

Hot-bubble in Xrays: CXO image (blue), $H\alpha$ (green), [NII] (red) (Ruiz+2013)

- (Expected) Shocked gas due to a fast (~1000 km/s) wind from hot central star, interacting with slow wind ejecta, should produce a hot bubble at temperatures Tx >> 10⁶ K
- (New) X-ray luminous central stars in 50% of PNe (70% for known binary CSPNe) - emission much harder (>~0.5 keV) than expected from stellar photosphere (100-200 kK)

Probe of processes related to central star (binarity and/or magnetic fields, or self-shocking winds as in O stars)

fuvAGB Stars (UV and X-Ray Emission)

Binaries with actively accreting main-sequence companions?

- Search for binarity using FUV emission in AGB stars: Large and variable UV flux most likely related to accretion activity in a binary (Sahai +2008)
- Pilot studies with XMM/Chandra to search for X-Ray Emission from fuvAGB Stars: 50% detection rate (Sahai+2014, in prep), energetic X-ray SEDs (coronal gas, Tx >30 MK, likely produced in an accretion shock, confined by magnetic fields in vicinity of AGB star/disk)

Y Gem: highest FUV flux amongst ~100 AGB stars with GALEX FUV fluxes (Sahai, Neill +2011)

- Largest UV flux amongst all FUV-excess AGB stars (M8)
- UV flux very large, decreased dramatically from 2006 to 2008
- FUV/NUV flux ratio > 1
- CO 2-1 line emission shows narrow profile (FWHM=3.4 km/s) likely arises in a large (~300 AU) disk, rather than a outflow (e.g., Jura & Kahane 1999)
- H α profile variable on time-scales of days to months; radio emission shows thermal (ionized gas) & non-thermal emission
- Very energetic, variable X-ray SED (Tx~50-150 MK), Fe 6.3-6.9 keV line emission X-rays scattered by disk?

pAGB Objects (Dusty Equatorial Waists)

- Dusty Waists important morphological component of post-AGB objects
- 2 major classes of post-AGB objects
- (a) PPNe different in their morphologies (have extended outflows)
- (b) disk-prominent post-AGB objects (dpAGB): (radial-velocity) binary stars and circumbinary disks (lack extended nebulae). (e.g., AC Her, U Mon, RV Tau unresolved, <1"-2": Sahai, Claussen, Schnee, & Morris 2011)</p>
- 2 Different OBSERVED Manifestations of such structures
- 1. Large (~1000 AU) Torii
- i) Dark band obscuring central star in a bipolar/ multipolar object (mostly PPNe); in some cases, an outer radial edge is detected
- ii) Bright toroidal or barrel-shaped regions (in most PNe)
- 2. Medium-sized (~10-50 AU) Disks

Disks in dpAGB objects (e.g., proposed from SED/spectral modelling: e.g., de Ruyter+2005; van Winckel +2008, Gielen+2007; direct detection - interferometric visibilities with VLTI & modelling, e.g., Lykou+2011, Keplerian disk with CO interferometric observations (Red Rectangle) e.g., Bujarrabal+2013)

pAGB mass loss (Dusty Equatorial Waists)

■ The origin of these circumbinary disks and large dusty waists is a mystery current models based on Bondi-Hoyle accretion from an AGB wind around a companion only produce small-sized (~1 AU) accretion disks (*Mastrodemos & Morris 1998,1999*)

But, the waist regions of PPNe and dpAGBs share many observational similarities

- a) Submm excesses: large (millimeter-size) grains
- b) Crystalline silicate features (e.g., seen in Spitzer spectra: *Gielen+2007*)
- So, in both PPNs and dpAGBs, the mineralogy and grain sizes show that dust is highly processed
- Probe the mass/kinematics of the dust/waist structure => test formation models

low mass & Keplerian rotation (e.g. due to accretion around a companion from AGB wind)

large mass & expansion, if Common Envelope ejection in a binary, equatorial mass-outflow

waist lifetime > time-scales for dust processing, grain growth (> ~ 2000 yr, Jura 2001)

pAGB mass-loss: Continuum Emission from Dusty Waists

Pilot Study (Sahai+2011)

Table 1: Radio and Millimeter-Wave Fluxes of post-AGB Objects

Source	X	Ka	Q	$3\mathrm{mm^a}$	$1.3\mathrm{mm}^\mathrm{b}$	$0.85\mathrm{mm}$	D^c	M_d
	$\mu \mathrm{Jy}(\sigma)$	$\mu Jy(\sigma)$	$\mu \mathrm{Jy}(\sigma)$	$\mathrm{mJy}(\sigma)$	$mJy(\sigma)$	$mJy(\sigma)$	kpc	$10^{-2} M_{\odot}$
RV Tau		270 (50)	(107)	3.9(0.2)		$50.3(3.6)^{d}$	2.2	0.1
U Mon		(100)	(169)	15(0.3)	100(14)	$182(2.6)^{d}$	0.77	0.064
AC Her	(46)			4.6(0.4)	38(1)	$99.4(3.8)^{d}$	1.1	0.072
IRAS16342-3814	(162)	(168)	(254)	***	$277(13)^{e}$	$602(90)^{f}$		
IRAS17150-3224		(240)	(213)		$158 (10)^{e}$			
IRAS18135-1456	(66)	(82)	(169)	$12(1.4)^{g}$				
IRAS18276-1431		(108)	(157)	$11(3.2)^{g}$				
IRAS19548+3035	(45)			$6(1.1)^{g}$	•••			
IRAS20000+3239	(44)			$6(1.1)^{g}$	$11.4(1.7)^{h}$	$30.9(2.5)^{i}$		
IRAS22036+5306	1010 (62)	1180 (55)	1230 (81)	$8.4(0.7)^{j}$	•••	$290 (40)^{j}$	2	2.2

Confirm presence of substantial masses of very large (mm-size) grains β at mm wavelenghts lower in dpAGBs (<0.4) than PPNe (~1)

Extended study in progress using SMA, CARMA, ALMA, ATCA, VLA (huge increase in sensitivity): Sahai, Patel, Gonidakis et al 2014, in prep

^aBeam sizes for RV Tau, U Mon, & AC Her 3 mm observations are 2".4×1".5, 2".4×2".1, & 2".4×1".5, respectively

^bBeam sizes U Mon & AC Her 1.3 mm observations are 2".2×0".9 & 2".0×1".8, respectively

AGB Mass-Loss: extended CSE structure signature of hidden binary at center "Circular Arcs" or Archmidean Spiral Structure

First seen in many well-known AGB/pAGB objects with HST (IRC 10216, CRL 2688, NGC 6543, NGC7027)

15.2 KM/S 11.1 KM/S -13.6 KM/S

CIT-6 HC3N J=4-3 (36.39 GHz)
beam ~0.7" x 0.6", panel size 21"
Claussen, Sjouwerman, Rupen et al. 2011)
a one-armed spiral in the center?
(inferred by Dinh-V-Trung & Lim 2009, from a lower-resolution map)

Spiral structure can be induced by a companion

(first shown by *Mastrodemos & Morris 1999*)

CRL3068 HST image: Morris+2006, Mauron & Huggins 2006

Hydro simulation: comparable mass binary system, orbital plane inclined by 50 deg (Kim & Taam 2012)

AGB mass-loss (duration, total mass of ejecta)

(mass~R_{out}, outer boundary probed via signature of ISM interaction)

GALEX FUV/NUV image of IRC10216 (Sahai +Chronopoulos 2010)

- AGB CSEs much larger than traced in CO (photodissociated by Interstellar UV)
- Scattered light from dust traced further out with deep optical imaging (200" for IRC10216)
- even further out, HI observations useful (but difficult!)

Bow-shock shows evidence of interaction with ISM at radii 500"-1000" (termination shock to bow-shock)

Envelope Mass (taking dM/dt=2 x 10⁻⁵ Msun/yr, d=130 pc) is > ~1.4 Msun

Such observations provide, for the first time, a physical outer boundary to the CSE resulting from dense, heavy AGB mass-loss

e.g., Bow-shocks in R Cas, R Hya, α Ori, Ueta+2010 (& references therein)

AGB mass-loss (duration, total mass of ejecta)

FUV GALEX image of CIT 6 (24'.75 \times 24'.75)

(location of the central star: *)

Astrosphere of carbon star CIT 6 (Sahai & Mack-Crane 2014)

Total Envelope Mass > ~0.3 Msun

Object moving North thru Warm Ionized Medium at >~ 39 km/s

Puzzling Features

Double-arc structure, detailed shape of astrosphere not well explained by models

- Higher mass-loss rate in past?
- Inclination?
- Object has entered relatively dense clump of WIM recently

AGB Mass Loss (duration, total mass of ejecta)

Herschel PACS imaging

Fermata: UU Aur

Rings: AQ And

Eyes: VY Uma

Irregular: V Cyg

Cox+2012: PACS 70 and 100 μm imaging (part of the MESS Key program: PI Groenewegen)

For 43/56 nearby (<0.5 kpc) AGB and supergiants:

- Fermata and eyes due to bow-shock interactions of the AGB winds with the ISM
- Eye-class tentatively associated with (visual) binaries
- Rings do not appear in M-type stars, only for C or S-type stars, consistent with their origin being a thermal pulse
- 3 stars (R Scl, TX Psc, U Cam) show rings and evidence of bow-shock interaction

Detailed modeling using hydrodynamical simulations to fit stand-off distance, shape, density distribution, e.g., Villaver+2012

Bow-shock: Standoff distance

~ $(dM/dt \ Vexp / n_{ISM})^{0.5} / V_* \ (V_* \ is velocity relative to ISM)$

pAGB mass-loss: Herschel/HIFI observations

PPNe and PNe (HIFI Key Herschel Program, Bujarrabal+2012)

Wide profiles, sometimes very extended wings

Submm & Far-IR lines from CO, ¹³CO, H₂O (and others)

Warm fast winds (CRL618: >200K, CRL2688: 100K)

Cold fast winds (OH231.8+4.2, NGC6302: 30K)

=> cooling of the fast wind with age: fast outflow in CRL618 is young (100 yr), in OH231.8, older (1000 yr)

pAGB mass-loss: OPACOS Survey

S'anchez Contreras & Sahai 2012

20 pPNe (+5 AGBs, 2 PNe)

	Properties of the Sources in Our Survey OPACOS								
Source	Other	Object ^a	Spectral	Morphology ^b	Chemistry ^c	f12/f25	f60	d^{d}	
(IRAS No.)	Names	Class	Туре	(Opt./NIR)			(Jy)	(kpc)	
03206+6521	OH 138.0+7.2	AGB	M?	S	0	0.71	37.5	3.4	
18055-1833	V* AX Sgr	PPN	G8Ia	S	O	0.73	33.1	2.0	
18135-1456	OH 15.7+0.8	PPN	G5-K0	S	O	0.25	158	2.5	
18167-1209	OH 18.5+1.4	PPN	F7	S	O	< 0.16	21.3	7.0	
18276-1431	OH 17.7-2.0	PPN	A0-K5	В	O	0.17	120	3.0	
18348-0526	OH 26.5+0.6	AGB	M	†	O	0.57	463	1.1	
18420-0512	OH 27.5-0.9	PPN	M1	B,ml	O	0.04	26.2	6.0	
18460-0151	OH 31.0-0.2	PPN(wf)		†	O	< 0.64	<277	7.0	
18560+0638	OH 39.7+1.5	AGB	M	†	O	0.83	101	1.4	
19024+0044	OH 35.3-2.6	PPN	G0-5	M	O	0.06	42.5	10	
19134+2131		PPN(wf)		В	O	0.32	8.56	8	
19234+1627	PN G051.5+00.2	PN		E		< 0.22	15.5	9.5	
19255+2123	OH 56.1+2.1,K3-35	PN	>60kK	В	O	0.08	48.2	4.0	
19292+1806	OH 53.6-0.2	PPN	B?	В	O	< 0.10	28.8	5.0	
19306+1407		yPN	B0-1	В	C+O	0.06	31.8	5.5	
19374+2359		yPN	B3-6	В	O	0.24	70.9	11	
19475+3119	HD331319	PPN	F3	M	O	0.01	55.8	3.5	
19548+3035	RAFGL2477	PPN	M6	S	C+O	0.69	46.7	4.0	
19566+3423		AGB		S	C+O	0.42	49.0	9.0	
20000+3239	GLMP 963	PPN	G8I(simb)	E/B	C	0.21	30.0	3.0	
20462+3416	LS II+34 26	yPN	B1.5	E	O	:0.02	12.1	2-5	
22036+5306	GLMP 1052	PPN	F4-7	В	O	0.18	107	4.0	
22177+5936	OH 104.9+2.4	AGB	M	S	O	0.54	90.7	2.4	
22223+4327	V448 Lac	PPN	F8Ia	В	C	0.06	22.4	4.0	
22568+6141	PN G110.1+01.9	yPN	B0	В		0.12	20.8	6.0	
23166+1655	AFGL3068, LL Peg	AGB	C	spiral	C	0.91	248	1.1	
23304+6147	GLMP 1078	PPN	G2Ia	B(M?)	C	0.19	26.6	4.0	
		$\overline{}$							

Many interferometric CO mapping papers by Bujarrabal, Alcolea, S'anchez Contreras, Castro-Carrizo & colleagues on post-AGB objects such as M1-92, M2-56, CRL618, IRAS19475, Red Rectangle ...

Objects have extended, cool dust shells

SUMMARY OF OBSERVATIONAL RESULTS

Circumstellar ¹²CO: 24 detections (+ 3 upper limits) - sample of PPNe with CO data significantly enlarged - envelope spatially resolved in ~18/24 objects - asymmetries and velocity gradients in all; broad wings in line profiles for $\geq 50\%$ (=> signatures of fast post-AGB outflows)

Surveys lead to discoveries of extreme objects, e.g., IRAS19374, which have very large momentum excesses, and thus provide the most stringent tests of theoretical models