

The Grand Challenges of Astrochemistry

- What is the organic inventory of space, in particular in regions of star and planet formation and how does that relate to the prebiotic origin of life?
- What is the role of molecules in the evolution of the Universe?
- How can we use molecules to study the Universe?

a trip down memory lane

incredibly rich spectrum interstellar

Peeters et al, 2002, A&A,390, 1089

Interstellar PAHs & the IR emission features

- The IR emission features are due to a population of Polycyclic Aromatic Hydrocarbon molecules
- Typical size $N_c \sim 50$ C-atoms
- some 5-20% of the elemental carbon in space
- Highly aromatic (aliphatic, carbonyl, amine, hydroxyl all less than 2% relative to C or H, respectively)

GrandPAHs

IR emission spectra are very similar, particular in the "extreme" regions of the ISM

15-20 μm region often dominated by a few bands (16.4/17.4/17.8 μm)

Typical PAH will absorb some 100 Million UV photons over its lifetime ——— what can break, will break

Interstellar PAH family dominated by a few, extremely stable species: the grandPAHs

circumcircumcoronene

Tielens 2008, ARAA, 46, 289

Chemical Variations in NGC 7023

Boersma et al 2014, ApJ, 795, 110

- Spectral variations imply chemical variations:
- 7.6/7.8, 6.2/7.6, & 11.2/12.7 μm bands

Molecular Structure of Interstellar PAHs

 The out-of-plane bending modes probe the "edge" structure of PAHs

 Spectral pattern is sensitive to "H-adjacency"

- Hony et al, 2001, A&A, 370, 1030
- Hudgins & Allamandola 1999, ApJ, 516, L41

Molecular Structure of Interstellar PAHs

- Interstellar PAH spectrum shows large variations in the oops modes
- Variations in the molecular structure of the emitting PAHs
- Related to physical conditions

Hony et al, 2001, A&A, 370, 1030

Spectral-spatial variations in NGC 7023

Boersma et al 2014, ApJ, 795, 110

Close to the illuminating star, the emitting PAH population has many more "corners" than straight edges

PAH Spectra at the Brightest Spots of Reflection Nebulae

incredibly similar spectra

PAH Database Fit: Baserun

The NASA Ames PAH database provides a convenient tool to probe the characteristics of the emitting PAH population

http:www.astrochem.org/pahdb

PAH Database Fit: Sequential Baseruns

Sequential fits: Removing the selected PAHs from the previous fits produces lower quality fit: Limited number of PAHs can produce good fit

PAH Database Fit: Sequential fits by removing most abundant PAH

Subtle variations in the emission characteristics of individual PAHs

PAH Database Fit: observed variations in the 3 RNe

The observed small variations in the spectra of the 3 reflection nebulae imply less than 30% variations in the abundances of the PAHs in the baserun fit.

The 16-18 µm Bands

- Observations reveal very similar spectra for these 3 RNe (except for H₂ line at 17 μm)
- Carbon skeletal modes
- Most molecules show complex spectra with several bands
- Bands are molecule specific
- Evidence for (compact) grandPAHs

Evidence for GrandPAHs

IR emission spectra are very similar in these 3 RNe

Database analysis:

- Limited number of species can contribute
- Subtle spectral variations among intrinsic PAH spectra imply very limited differences between PAH populations
- Abundance variations are less than 30%

A few, large, compact PAHs dominate the population

circumcircumcoronene

PAHs & C₆₀ in NGC 7023

PAHs & C₆₀ Abundance

PAHs as a source of "small" Molecules

PAKs & UV fotonen leidt tot fragmentatie & isomerizatie

PAH photolysis

- Highly excited PAHs fragment
- Weakest link goes first
- Products will be investigated through laser action spectroscopy at Felix/
 Nijmegen and in the Laser Center in A'dam
- From PAHs to graphene to C₆₀

From PAHs to C₆₀

UV photolysis at 355 nm

From PAHs to C₆₀

UV photolysis at 355 nm

From PAHs to C60

UV photolysis of PAHs

- Weakest link goes first: strip of H's and form graphene flakes
- Followed by sequential steps of C₂ loss
- After loss of first C₂, isomerization to cages becomes important
- PAHs with $N_c>62$ will form C_{60} very efficiently (~20%)
- In NGC 7023, PAH destruction far outweighs C_{60} formation: initial PAH population skewed towards N_c <62

CO reservoir

Building the Solar System's Organic

PAH reservoir

gas:

ion-molecule reactions cosmic-ray photolysis

comets: energetic processing stars: soot chemistry shock chemistry

asteroids: aqueous alteration

hydrogenation
photolysis
thermal polymerization
ice-ion-molecule
ice segregation

Tielens 2011

hot core: ice evaporation ion-molecule reactions

nebula:
UV & X ray photolysis
radical reactions
hydrocarbon chemistry
Fischer-Tropsch
shocks, intermittent
accretion, diffusion

Schematic of PAH evolution in NGC 7023

Future

- What are the spectroscopic signatures of large PAH molecules and how do they depend on the molecular structure?
- What is the relation between the chemical and physical characteristics of large molecules (size, charge state, excitation) and the physical conditions of a region?
- How can we translate these observational characteristics into astronomers tools to reveal the physical conditions in regions near and far?
- What does that tell us about the processes taking place in the universe?
- What does that tell us about the organic inventory of the Universe and in particular the habitable zone of regions of planet formation?

SOFIA & Looking for mr 'grandPAH'

The interstellar PAH family seems to be dominated by a few, large, very stable, compact PAHs

Identification of specific PAHs

- Pure rotational spectra: Anomalous microwave emission
- Drumhead or jumping jack modes: Lowest-lying vibrational state will emit when the modes have decoupled and will show rotational substructure

Observing strategy with future instruments on SOFIA

- Wide wavelength coverage at moderate resolution
- High spectral resolution within limited spectral range
- Target brightest spots in RNe

SOFIA & Looking for mr 'grandPAH'

- The far-IR 'drum head' or Jumping Jack modes are highly molecule specific
- Only SOFIA has the potential to measure all vibrational modes of interstellar PAHs
- Requirements: Moderate resolution (R=200-1000) spectroscopy from 5-200 μm
- High resolution follow up using GREAT to resolve P-Q-R branch structure of lowest vibrational transitions

Calculated spectrum for the Red Rectangle