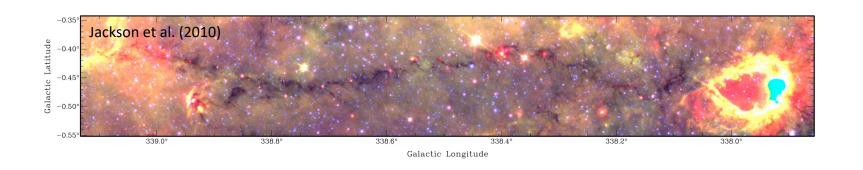


The Dynamics and Mass Ejection in RCW 36

L. Bonne

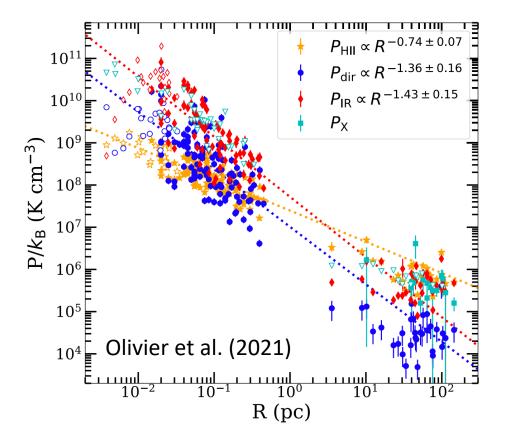

SOFIA Tele-Talk

December 14th 2022

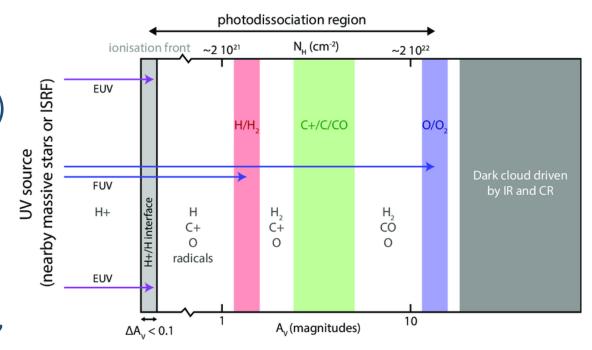
With many thanks to: N. Schneider, P. García, A. Tielens, R. Simon, A. Bij, L. Fissel, L. Townsley, P. Broos, J. Jackson, R. Guesten, A. Zavagno and the FEEDBACK team

Feedback in molecular clouds

- Stellar feedback shapes the interstellar medium (ISM)
 (e.g. Churchwell et. 2006)
- ➤ Drives galactic and molecular cloud evolution
 - Quasi-static or rapid molecular cloud evolution? (e.g. Shu et al. 1987; Elmegreen 2000)



Feedback in molecular clouds

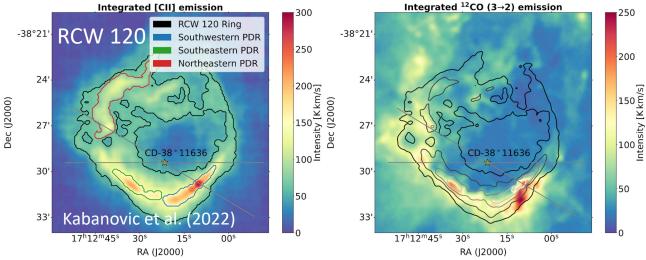

➤ Which feedback mechanism drives the expansion of HII regions?

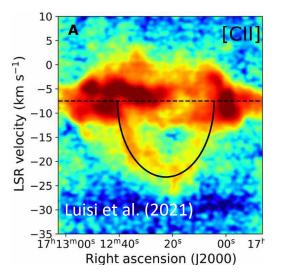
- ➤ Many uncertainties
 - Stellar models?
 - Hot plasma dissipation?
 - Leakage?
 - Filling factors?

The FEEDBACK legacy program

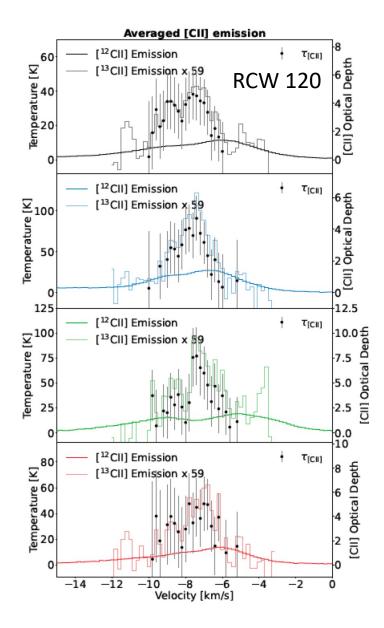
- Large upGREAT spectral data cubes (Schneider et al. 2020)
 - [CII] at 158 μm and [OI] at 63 μm
 - Traces photodissociation regions (PDRs)
 - High spectral resolution (R > 1 000 000)
- ≥11 high-mass star forming regions
 - Diverse regions
 - Complementary data: ^{12/13}CO, Herschel, Chandra,...

Outline

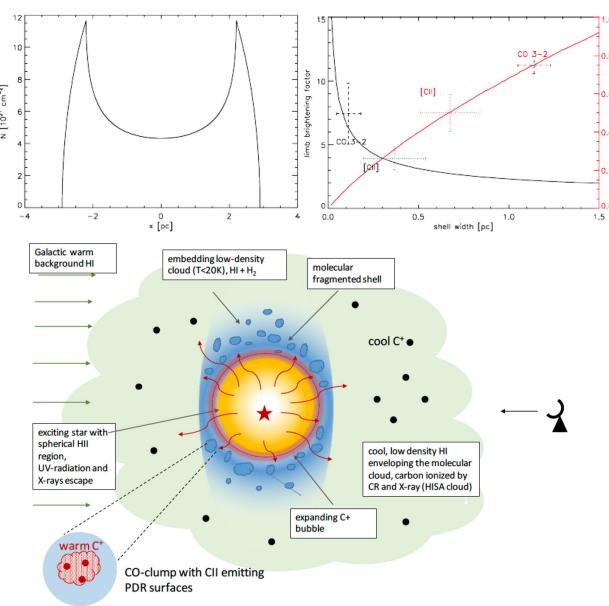

➤ The first FEEDBACK results

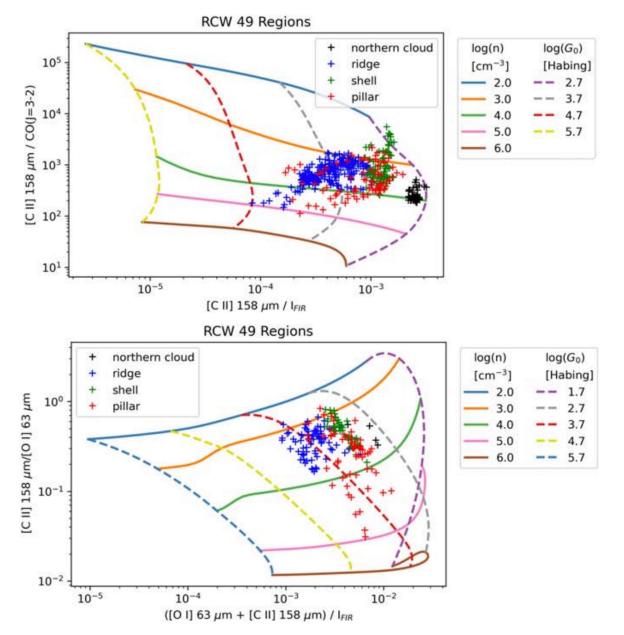

➤ Introduce RCW 36 and the observed dynamics

➤ Magnetic field observations

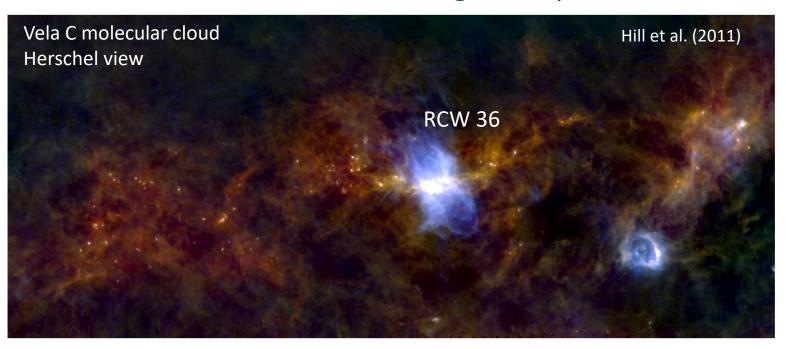

➤ Which feedback mechanisms drive the observed dynamics?

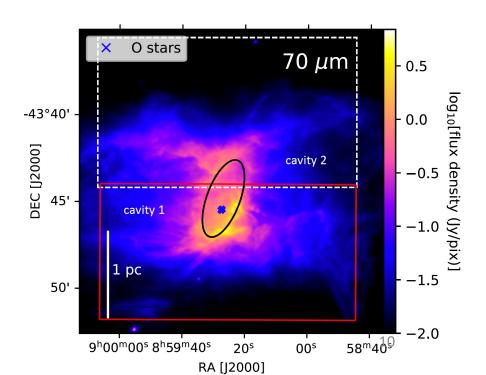
- High-velocity expanding shells (Luisi et al. 2021; Tiwari et al. 2021; Beuther et al. 2022)
- ►[CII] self-absorption (Kabanovic et al. 2022
- Expansion in a sheet (Kabanovic et al. 2022)
- PDR modeling (Tiwari et al. 2022)



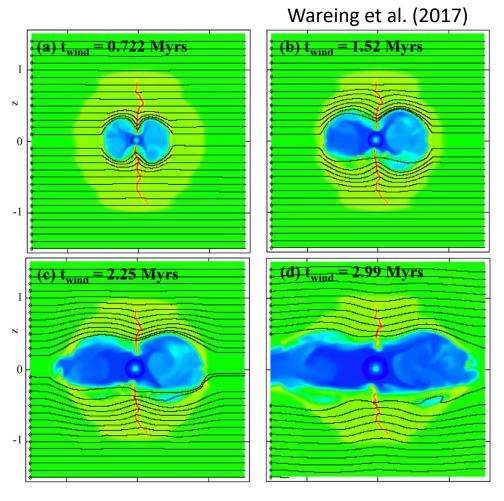

- High-velocity expanding shells (Luisi et al. 2021; Tiwari et al. 2021; Beuther et al. 2022)
- ► [CII] self-absorption (Kabanovic et al. 2022)
- Expansion in a sheet (Kabanovic et al. 2022
- PDR modeling (Tiwari et al. 2022)

- High-velocity expanding shells (Luisi et al. 2021; Tiwari et al. 2021; Beuther et al. 2022)
- ► [CII] self-absorption (Kabanovic et al. 2022)
- Expansion in a sheet (Kabanovic et al. 2022)
- PDR modeling (Tiwari et al. 2022)

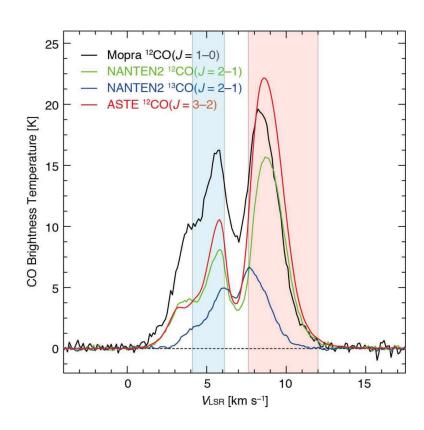



- High-velocity expanding shells (Luisi et al. 2021; Tiwari et al. 2021; Beuther et al. 2022)
- ► [CII] self-absorption (Kabanovic et al. 2022)
- Expansion in a sheet (Kabanovic et al. 2022)
- ► PDR modeling (Tiwari et al. 2022)

RCW 36 in the Vela C molecular cloud

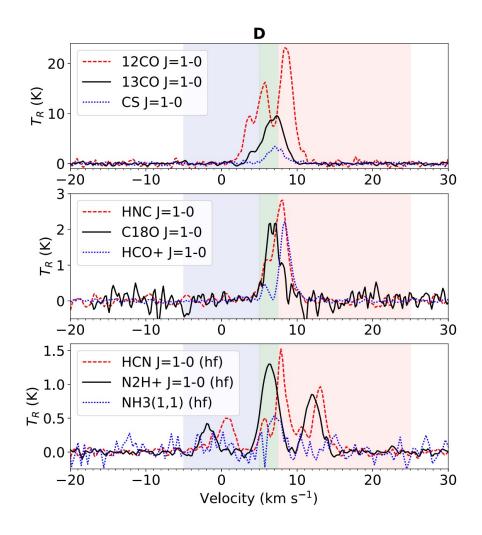

- ➤ RCW 36: A bipolar HII region
 - Distance: 900 950 pc (Zucker et al. 2020)
 - 1.1 ± 0.6 Myr old OB cluster (Ellerbroek et al. 2013)
 - A dense molecular ring and bipolar cavities

Bipolar HII regions


- ➤ Bipolar HII regions are rare (Samal et al. 2018)
 - ≤ 10%
 - Projection effects?
- Limited number of studies
 - Theoretical and observational
- Generally proposed to form in a sheet (e.g. Bodenheimer et al. 1979)
 - Simulations: bipolar morphology remains over time (e.g. Wareing et al. 2017)

Proposed cloud-cloud collision in RCW 36

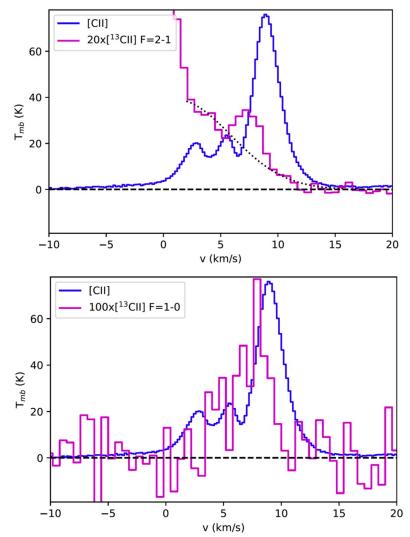
➤ RCW 36: Proposed to have formed in a cloud-cloud collision (Sano et al. 2018)


- ➤ Detailed investigation of higher density tracers raises questions (Fissel et al. 2019)
- >[(13)CII] unveils self-absorption
 - Raises further uncertainty on the proposed collision

Proposed cloud-cloud collision in RCW 36

➤ RCW 36: Proposed to have formed in a cloud-cloud collision (Sano et al. 2018)

- Detailed investigation of higher density tracers raises questions (Fissel et al. 2019)
- >[(13)CII] unveils self-absorption
 - Raises further uncertainty on the proposed collision

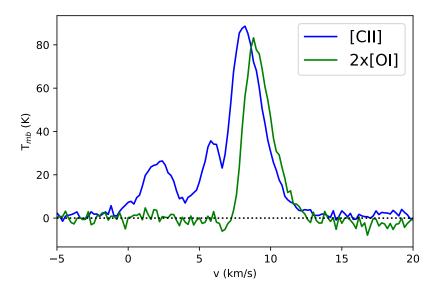


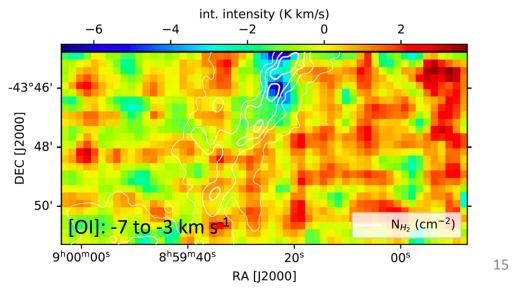
Proposed cloud-cloud collision in RCW 36

➤ RCW 36: Proposed to have formed in a cloud-cloud collision (Sano et al. 2018)

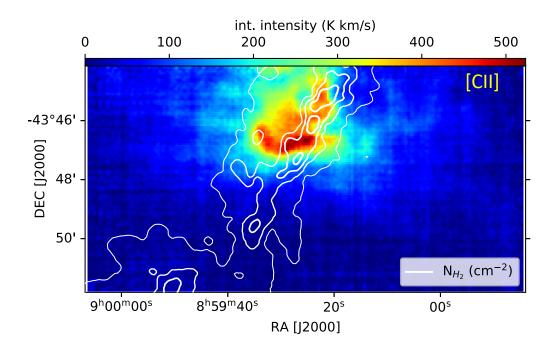
➤ Detailed investigation of higher density tracers raises questions (Fissel et al. 2019)

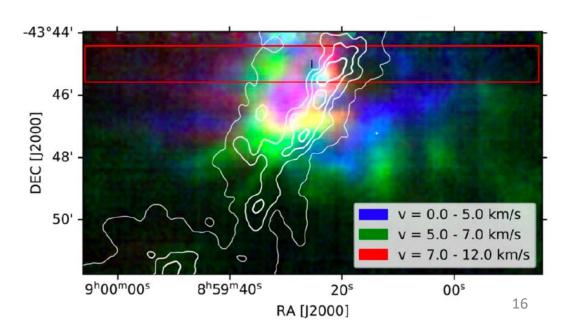
- >[(13)CII] unveils self-absorption
 - Raises further uncertainty on the proposed collision




Indications of [OI] absorption

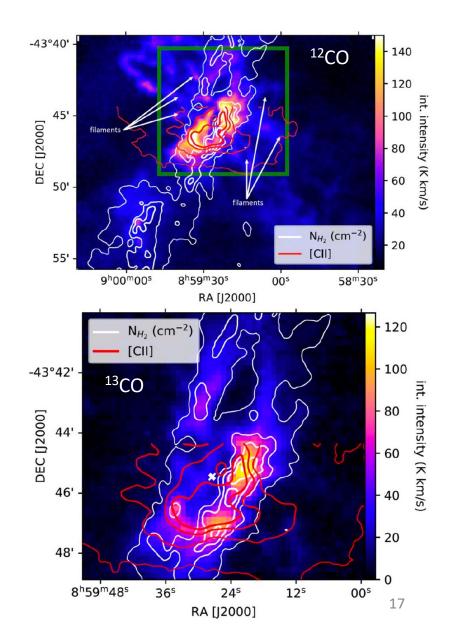
- ➤[OI] also absorbed away
 - Appears to go below the baseline
- > At 70 μm continuum and column density peak

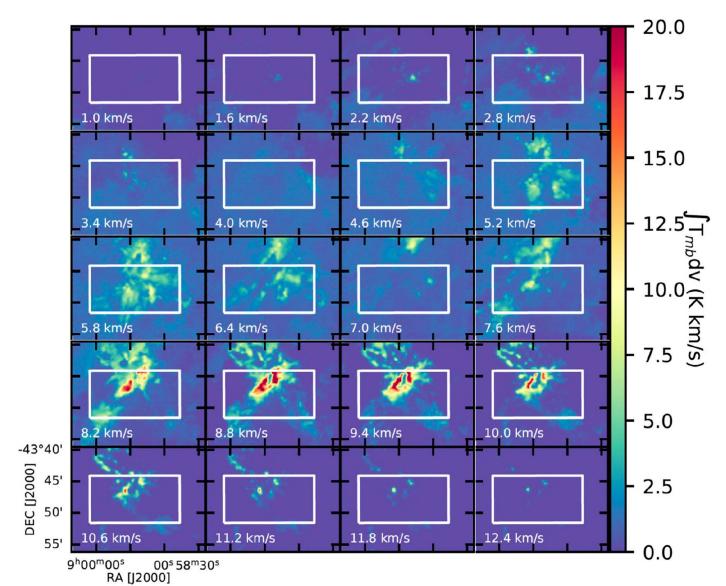

Indicates expansion



The [CII] map of RCW 36

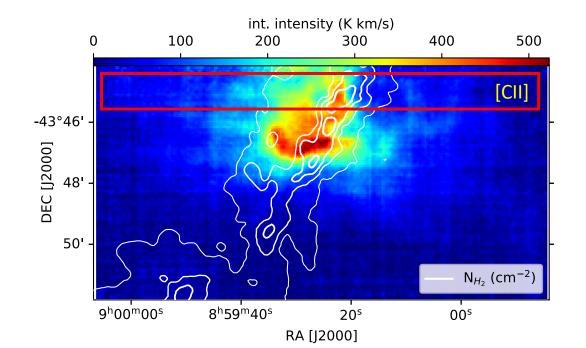
- ➤ Bright [CII] emission in the molecular ring
- ➤ Ring expands at 1-2 km s⁻¹
 - Also seen in molecular lines (Minier et al. 2013; Bij et al. in prep.)

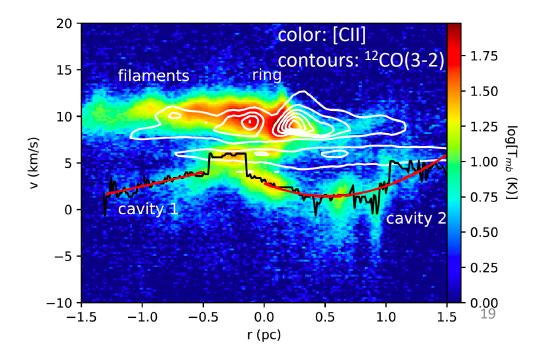



The ^{12/13}CO map of RCW 36

➤ APEX observations of ^{12/13}CO(3-2) with the LAsMA receiver

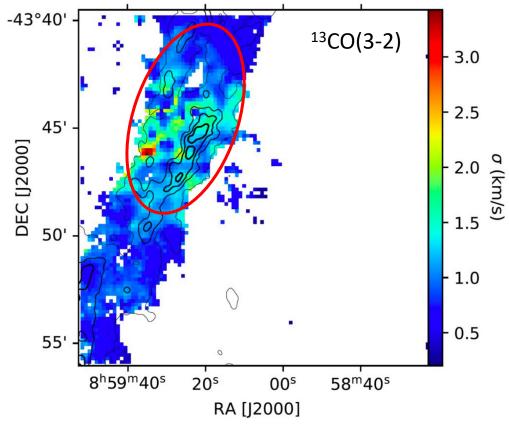
- ≥13CO highlights the dense ring
- ≥ 12CO highlights filamentary structures
 - Perpendicular to ring
 - Curved morphology



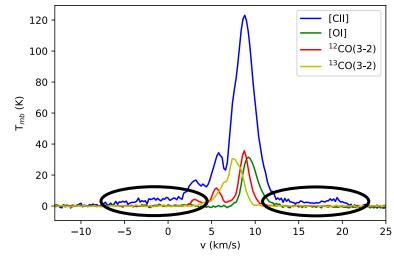

Filaments in ¹²CO(3-2)

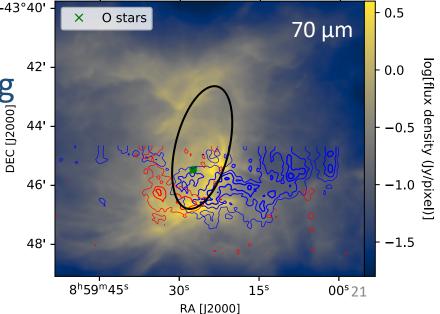
The dynamics of RCW 36 in [CII]

- >[CII] emission: expanding shells in the cavity
 - Estimated expansion velocity: 5.2 ± 0.5 ± 0.5 km s⁻¹
- ➤ Short dynamic timescale ~0.2 Myr: lifetime of the cavities?



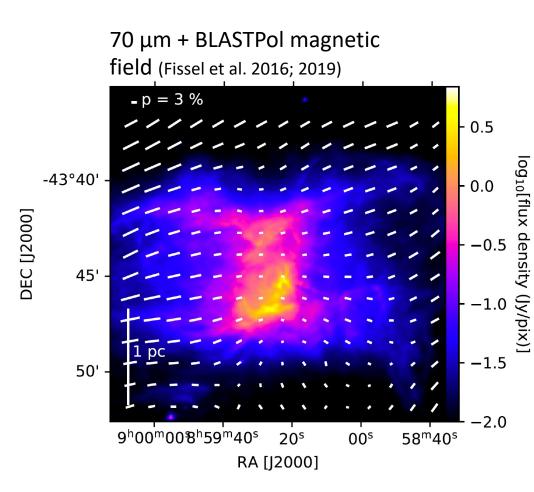
Turbulence in the ring


- ➤ Increased molecular linewidth in the ring
 - Some opacity effects, but minimal
 - Required energy injection rate: 2.4x10³³ erg s⁻¹


- ➤ Might alter outcome of ongoing star formation activity
 - In competition with ring erosion

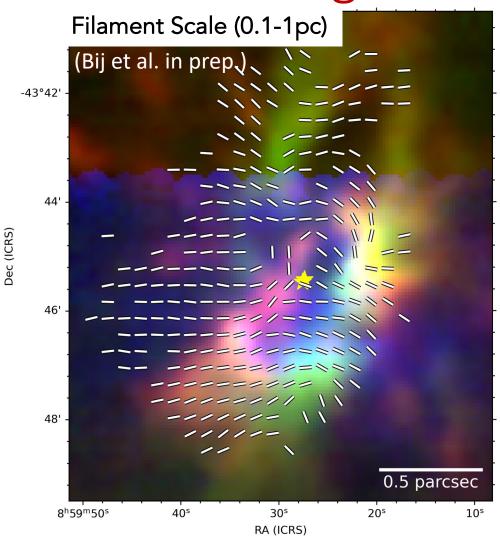
The [CII] high-velocity wings in RCW 36

- >[CII] high-velocity wings: ~15 km s⁻¹
 - S/N > 10 in individual channel
- ➤ No evident shell morphology
 - No protostellar objects
- - Mass ejection rate: ~4-7x10⁻⁴ M_{sun} yr⁻¹
 - Can disperse the dense ridge in ~1-2 Myr
 - Required energy rate: 1-1.6x10³⁵ erg s⁻¹

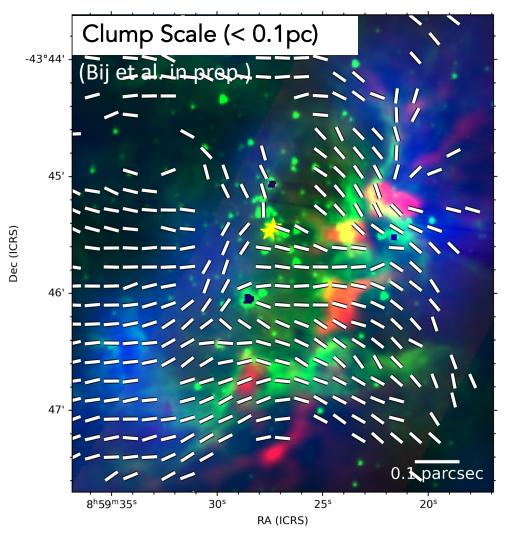


The magnetic field around RCW 36

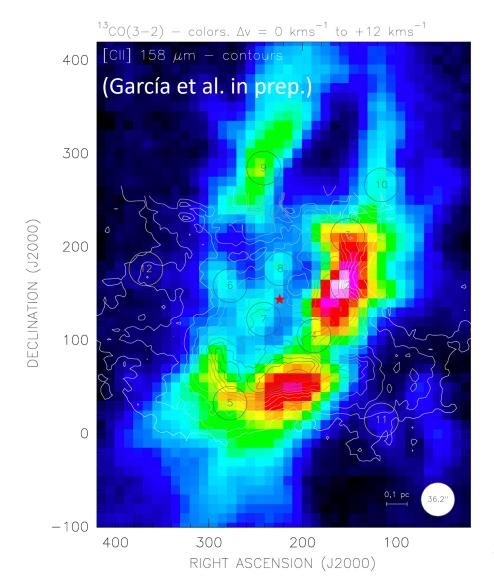
- Magnetic field at 500 μm with BLASTPol
 - Perpendicular to the ring


- ➤ Curves along the cavities
- ➤ Sheet or magnetically favored direction?

High-resolution magnetic field in the ring


- > HAWC+ observations (Bij et al. in prep.)
 - Band C (79 μm) & E (214 μm)

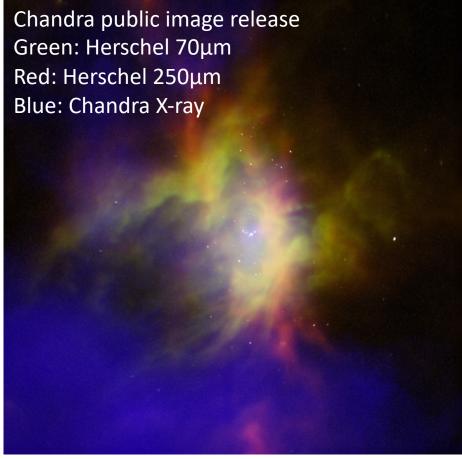
- More detailed analysis of 'the ring' (Bij et al. in prep.)
- ➤ Complex morphology
 - Aligned and perpendicular to density structures


High-resolution magnetic field in the ring

- > HAWC+ observations (Bij et al. in prep.)
 - Band C (79 μm) & E (214 μm)
- More detailed analysis of 'the ring' (Bij et al. in prep.)
- ➤ Complex morphology
 - Aligned and perpendicular to density structures

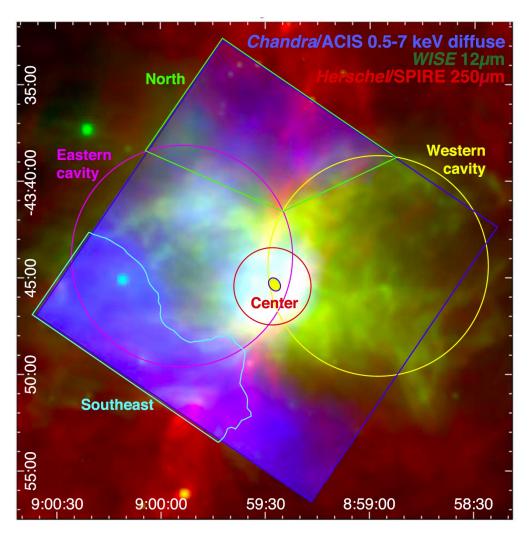
PDR and XDR modeling of the ring

- ➤ 12 pointed observations with a variety of lines (García et al. in prep.)
 - ^{12/13}C^(18/17)O(2-1,3-2,4-3,6-5)
 - HCO⁺(2-1,3-2,4-3)
 - [CI](1-0), [CII], [OI]
- ► PDR modeling (Röllig et al. 2013; Pound & Wolfire 2022)
- >XDR modeling (Meijerink et al. 2007)
- >[18O/17O] abundance ratio



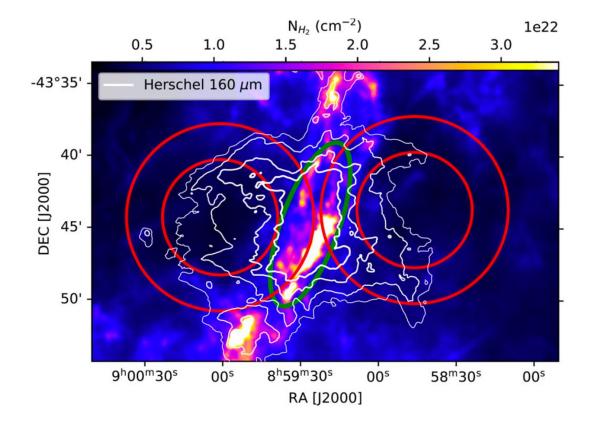
Chandra observations of RCW 36

- ➤ Point sources
 - Members of the stellar cluster


- ➤ Extended X-ray emission
 - Weak in the cavities (extinction)
 - Extended around the cavities

https://www.nasa.gov/mission_pages/ch andra/news/astronomers-see-stellar-selfcontrol-in-action.html 0.5-7 keV (see also Townsley et al. 2014)

Chandra observations of RCW 36


- Fitting the X-ray spectra (using XSPEC; Arnaud 1996)
 - Five regions
 - Hot plasma (created by stellar winds)
- Similar hot plasma properties in- and outside the cavities
 - Leakage from RCW 36

- Energy and mass of the expanding structures?
 - Define with Herschel or [CII]

➤ Define:

- Ring (green)
- Cavities (red) include limb brightening

➤ What drives the expansion?

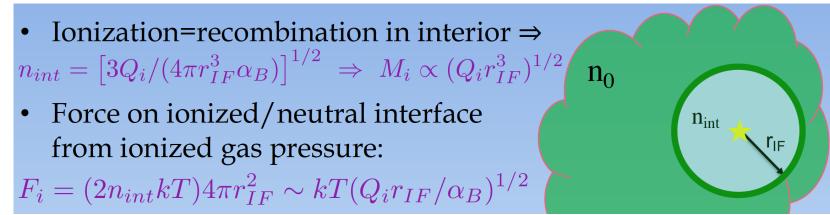
➤ Hot plasma energy

• East cavity: 7.2x10⁴⁶ erg

• West cavity: 5.4x10⁴⁶ erg

• Ring: \

> Requires adiabatic expansion


Region	Mass	Kinetic Energy					
$70~\mu\mathrm{m}$ and $160~\mu\mathrm{m}$ Column Density Map							
Ring	$9.1\times10^2~M_{\odot}$	$(0.9-3.3) \times 10^{46} \text{ erg}$					
East cavity	$4.5 \times 10^2 M_{\odot}$	$(1.2 \pm 0.2 \pm 0.2) \times 10^{47} \text{ erg}$					
West cavity	$3.9 \times 10^2 M_{\odot}$	$(1.1 \pm 0.2 \pm 0.2) \times 10^{47} \text{ erg}$					
Total		$(2.4-2.6) \times 10^{47} \text{ erg}$					
SED-fitted Column Density Map							
Ring	$4.1\times10^2~M_{\odot}$	$(0.4-1.5) \times 10^{46} \text{ erg}$					
East cavity	$2.5 \times 10^2 M_{\odot}$	$(6.8 \pm 1.3 \pm 1.3) \times 10^{46} \text{ erg}$					
West cavity	$2.3 \times 10^2 M_{\odot}$	$(6.2 \pm 1.2 \pm 1.2) \times 10^{46} \text{ erg}$					
Total		$(1.2-1.4) \times 10^{47} \text{ erg}$					
[C II] Shell							
Full cavity (100 K)	$(1.5 \pm 0.5) \times 10^2 M_{\odot}$	$(4.1 \pm 1.4 \pm 0.8) \times 10^{46} \text{ erg}$					
Full cavity (250 K)	$(1.1 \pm 0.3) \times 10^2 M_{\odot}$	$(3.0 \pm 1.1 \pm 0.6) \times 10^{46} \text{ erg}$					
Full cavity (500 K)	$(1.0\pm0.3)\times10^2M_\odot$	$(2.7 \pm 1.0 \pm 0.5) \times 10^{46} \text{ erg}$					

- \triangleright Ionizing radiation over 1.1 Myr (from H α)
 - East cavity: 6.2x10⁴⁹ erg
 - West cavity: 6.6x10⁴⁹ erg
 - Ring: 7.6x10⁵⁰ erg
- ➤ Coupling efficiency for ionizing radiation is low
 - $\sim 10^{-4}$ (e.g. Haid et al. 2018)
 - Cavities: driven by hot plasma
 - Ring: can be driven by radiation

Region	Mass	Kinetic Energy					
$70~\mu\mathrm{m}$ and $160~\mu\mathrm{m}$ Column Density Map							
Ring	$9.1\times10^2~M_{\odot}$	$(0.9-3.3) \times 10^{46} \text{ erg}$					
East cavity	$4.5 \times 10^2 M_{\odot}$	$(1.2 \pm 0.2 \pm 0.2) \times 10^{47} \text{ erg}$					
West cavity	$3.9 \times 10^2 M_{\odot}$	$(1.1 \pm 0.2 \pm 0.2) \times 10^{47} \text{ erg}$					
Total		$(2.4-2.6) \times 10^{47} \text{ erg}$					
	SED-fitted Column Dens	sity Map					
Ring	$4.1\times10^2~M_{\odot}$	$(0.4-1.5) \times 10^{46} \text{ erg}$					
East cavity	$2.5 \times 10^2 M_{\odot}$	$(6.8 \pm 1.3 \pm 1.3) \times 10^{46} \text{ erg}$					
West cavity	$2.3 \times 10^2 M_{\odot}$	$(6.2 \pm 1.2 \pm 1.2) \times 10^{46} \text{ erg}$					
Total		$(1.2-1.4) \times 10^{47} \text{ erg}$					
	[C II] Shell						
Full cavity (100 K)	$(1.5 \pm 0.5) \times 10^2 M_{\odot}$	$(4.1 \pm 1.4 \pm 0.8) \times 10^{46} \text{ erg}$					
Full cavity (250 K)	$(1.1 \pm 0.3) \times 10^2 M_{\odot}$	$(3.0 \pm 1.1 \pm 0.6) \times 10^{46} \text{ erg}$					
Full cavity (500 K)	$(1.0 \pm 0.3) \times 10^2 M_{\odot}$	$(2.7 \pm 1.0 \pm 0.5) \times 10^{46} \text{ erg}$					

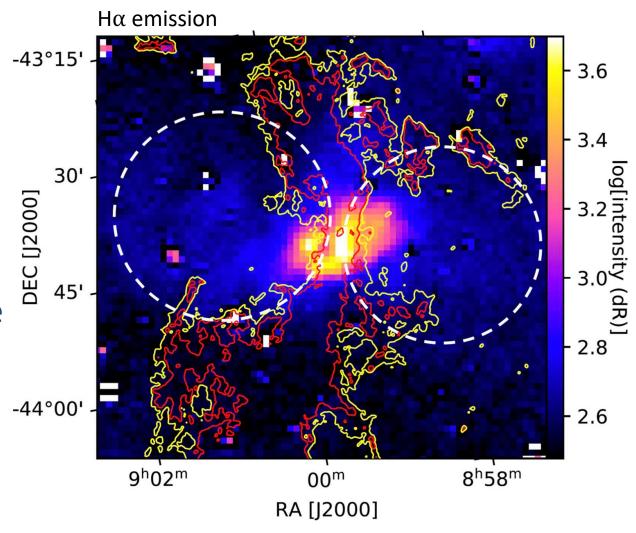
≻But...

E. Ostriker: Ascona conference 2022



- ightharpoonup Injected momentum in the cavities: 2.3-2.5x10³ M $_{\odot}$ km s⁻¹
 - Sufficient for $0.5-2.3x10^3~M_{\odot}~km~s^{-1}$ expansion momentum of the cavities

Leakage from RCW 36


➤ Hot plasma indicates leakage

- ➤ Larger cavities centered on RCW 36
 - Tentative correlation with hot plasma emission
- Hot plasma leakage (Harper-Clark & Murray 2009)
 - Could be as high as -2.0x10³⁵ erg s⁻¹

Leakage from RCW 36

- \triangleright Leakage also seen in H α
 - Confirms hot plasma leakage
- ➤ Disturbs the GMC on larger scales
- ➤ Estimated ionizing photon leakage
 - $1.4 \times 10^{36} \text{ erg s}^{-1} (\leq 10\%)$

High-velocity mass ejection: stellar winds

> Uncertainties in the stellar models

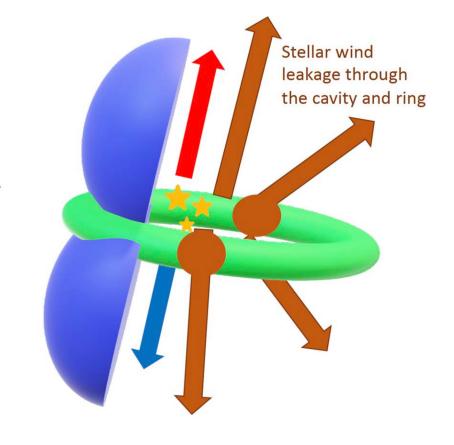
- Energy injection rate: 0.7-24x10³⁴ erg s⁻¹
- Needed to drive high-velocity wings: 1.0-1.6x10³⁵ erg s⁻¹

The Stellar Wind Mass Ejection Rates ($\dot{M}_{\rm SW}$) and Total Ejected Stellar Wind Energy (E_{SW})

Model	Star	Vink et al. (2000) $\log[\dot{M}_{SW} \ (M_{\odot} \ yr^{-1})]$	Lucy (2010) $\log[\dot{M}_{\rm SW}~(M_{\odot}~{\rm yr}^{-1})]$	Krtička & Kubát (2017) $\log[\dot{M}_{ m SW}~(M_{\odot}~{ m yr}^{-1})]$	Björklund et al. (2021) $\log[\dot{M}_{\mathrm{SW}}~(M_{\odot}~\mathrm{yr}^{-1})]$
Martins et al. (2005a) Martins et al. (2005a)	O9V O9.5V	-7.35 -7.57	-8.56 -9.00	−7.78 −7.94	-8.31 -8.53
Pecaut & Mamajek (2013) Pecaut & Mamajek (2013)	O9V O9.5V	-7.12 -7.35	-8.56 -8.58	−7.61 −7.78	-8.10 -8.31
		$E_{\rm SW}$ (erg)	$E_{\rm SW}$ (erg)	$E_{\rm SW}$ (erg)	$E_{\rm SW}$ (erg)
Martins et al. (2005a) Martins et al. (2005a) Martins et al. (2005a)	O9V O9.5V total	$2.7 \times 10^{48} $ $1.6 \times 10^{48} $ $4.3 \times 10^{48} $	$ \begin{array}{r} 1.7 \times 10^{47} \\ 5.7 \times 10^{46} \\ 2.3 \times 10^{47} \end{array} $	$ \begin{array}{c} 1.0 \times 10^{48} \\ 6.7 \times 10^{47} \\ 1.7 \times 10^{48} \end{array} $	3.0×10^{47} 1.7×10^{47} 4.7×10^{47}
Pecaut & Mamajek (2013) Pecaut & Mamajek (2013) Pecaut & Mamajek (2013)	O9V O9.5V total	5.4×10^{48} 2.9×10^{48} 8.3×10^{48}	$ \begin{array}{r} 1.9 \times 10^{47} \\ 1.7 \times 10^{47} \\ 3.6 \times 10^{47} \end{array} $	1.7×10^{48} 1.1×10^{48} 2.8×10^{48}	$5.4 \times 10^{47} 3.1 \times 10^{47} 8.5 \times 10^{47}$

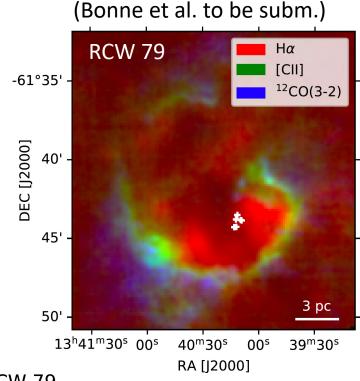
High-velocity mass ejection: ionizing radiation

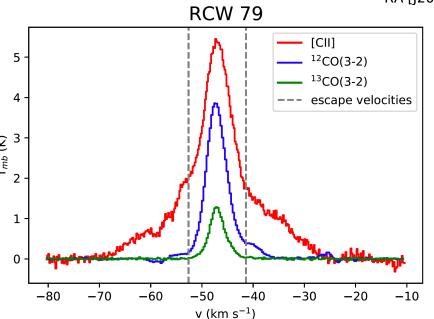
- ►Injected momentum rate by the O stars: 6.8x10⁻³ M_☉ km s⁻¹ Myr⁻¹
 - Needed to drive high-velocity wings: 1.1-1.6x10 $^{-2}$ M $_{\odot}$ km s $^{-1}$ Myr $^{-1}$
- ➤ Both stellar wind and ionizing radiation models pushed to the limit
- > Many uncertainties in calculation mass ejection rate
 - C⁺ abundance
 - Inclination angle
 - Temperature
 - •


Conclusion

➤ Inhomogeneous expansion in the Vela C molecular cloud

- ➤ High-velocity mass ejection and leakage
 - Rapid molecular cloud erosion once highmass stars have formed


Significant uncertainties to pin down the process that drives rapid cloud dispersal



Future

- A lot of FEEDBACK work still to be done
 - High-velocity gas is ubiquitous, morphology
 - More in-depth studies of feedback mechanisms
 - [CII] self-absorption
 - Constraining PDR models
 - [OI]
 - •
- ➤ Not so distant future:
 - Balloon missions?

