The Mid-infrared Molecular Inventory Towards Orion IRc2 and Hot Molecular Cores

Sarah Nickerson¹, Naseem Rangwala¹, Sean Colgan¹, Curtis DeWitt¹, Xinchuan Huang¹, Kinsuk Achharya², Maria Drozdovskaya³, Ryan C. Fortenberry⁴, Eric Herbst⁵, Timothy J. Lee^{1*}, Jose Monzon⁶, and Ciera Knabe⁷

¹NASA Ames Research Center , ²Physical Research Laboratory, ³University of Bern, ⁴University of Mississippi, ⁵University of Virginia, ⁶Yale University, ⁷University of Texas at Austin, *deceased November 3, 2022

Bay Area
Environmental

Research Institute

Stratospheric Observatory for Infrared Astronomy

SOFIA Tele-talk February 1st, 2023

Hot Molecular Cores

- Warm (≥ 100 K), small (≤0.1 pc) and dense (10⁵ to 10⁸ cm⁻³) gas near young, high mass protostars (Ohisi 1997)
- Stellar radiation evaporates ice on dust grains in molecular clouds
- Unlocks chemically rich reservoirs of complex and prebiotic molecules
- Abundant in rare molecular species (Kurtz+ 2000)
- Become the building blocks of planetary systems, such as our own Solar System
- Dozens discovered in the Milky Way, 4 total in the LMC

The

Uniqueness of the MIR

- Previous high spectral resolution surveys limited to radio, sub-mm, mm, and far-infrared wavelengths
- These longer wavelengths capture rotational transitions of molecules with permanent dipole moments
- Easily accessible from the ground with facilities such as ALMA and SMA
- Only the mid-infrared (MIR) can observe rovibrational transitions and molecules with no permanent dipole moment (e.g. C₂H₂ and CH₄)
- Radio to FIR captures molecules in cooler, outer regions of discs while the MIR to NIR covers the inner regions (Dullemond+ 2007, Barr+ 2020)
- MIR difficult to access because of atmospheric interference
- Past space telescopes ISO and Spitzer, and present JWST cannot resolve individual lines of hots cores in the MIR

Schematic SED with origin of wavelength regimes emitted spatially along a protoplanetary disc

Atypical: The Orion Hot Core

- Orion BN/KL within closest and most studied massive star formation region
- Site of explosion ~500 years ago from multi-body encounter; pushed BN and source I apart (Bally+ 2015)
- Orion hot core was first hot molecular core discovered, via NH₃ emission (Ho+ 1979)
- Orion hot core: atypical, externally heated and has no embedded protostar
- The edge of the Orion hot core is illuminated in MIR by IRc2
 - •IRc2 is possibly scattered radiation from radio source I (Okumura+ 2011) or source *n* (Simpson+ 2006)
- •IRc2 may be cavity in the Orion BN/KL nebula (Wynn-Williams+ 1984)

IRc2 in MIR

Previous survey in MIR with space-based telescope *ISO* 2.4 to 45.2 µm reveals rich molecular gas chemistry, species CO, H₂, C₂H₂, HCN, SO₂, and CO₂ (van Dishoeck+ 1998)

From 13.5 to 15.5 µm *ISO* only detects strongest absorption features (Boonman+ 2003); will be similar resolution to *JWST*

Ground-based TEXES can resolve individual lines of HCN and C₂H₂ in absorption, and SiO in emission but much of MIR is obscured by atmosphere (Lacy+ 2002, 2005)

SOFIA/EXES

- Stratospheric Observatory for Infrared Astronomy (SOFIA) had high spectral capability in the infrared
- Flew above most of the water vapour in the Earth's atmosphere ~40,000 ft
- EXES: Echelle spectrometer, 5–28 μm, resolution 10³-10⁵
- The only spectrograph with high enough resolution to identify individual molecules over the whole MIR
- We conducted an unbiased, MIR line survey at high resolution (R ~ 60,000) from 7.2 to 28.3 μm of Orion IRc2
- Complementary spectra from the ground with IRTF/TEXES

Compare resolution between MIR surveys towards Orion IRc2:

- Top: ISO/SWS, resolution ~1,500 (van Dishoeck et al. 1998), similar to JWST/MIRI
- Bottom: SOFIA/EXES, this survey, HNC absorption lines, resolution ~60,000
- With JWST/MIRI, these lines would be indiscernible from the continuum

SOFIA versus Ground in MIR

EXES Spectra Towards Orion IRc2

- Spectroscopic survey
 7.2 to 28.3 µm
- Over 350 unique features
- Molecular species identified:
 - absorption: HCN, HNC, C₂H₂, H₂O, NH₃, CH₄, SO₂, CS, H¹³CN and ¹³CCH₂
 - emission: H₂, H₂O and SiO
- Detect two velocity components in some absorption species (e.g. C₂H₂, CH₄, and HCN) and H₂ emission
- These two components are newly identified in this work and unique to the MIR

Wavelength (µm)

Nickerson+2021, ApJ, 907, 51 Nickerson+2022, arXiv:2211.15707

Molecular Components of the Orion BN/KL Region

Classic components, from sub-mm to radio spectroscopy in emission:

- Hot Core: hot, dense, and molecular rich
- Extended Ridge: quiescent, ambient gas
- Plateau: outflow from Source I, split into low velocity and high velocity flows
- Compact Ridge: interface between plateau and extended ridge

Radio Source I Plateau:

High Velocity Flow Low Velocity Flow

Composite of maps from: Wright+ 1996, Greenhill+1998, Okumura+ 2011, Crockett+ 2014, and De Buizer + 2012

Diagram is highly schematic and not to scale

Component	tisk	VEWHM	T	Species Detected in This Work
	(km s ⁻¹)	$(km s^{-1})$	(K)	
			MIF	R Components (This Work)
Blue Clump	-7.1 ± 0.7	8.9 ± 1.8	135 ± 47	C_2H_2 , $^{13}CCH_2$, CH_4 , CS , HCN , $H^{13}CN$, HNC , H_2 *, H_2O , NH_0 , OH^2 , SO_2
Red Clump	1.4 ± 0.5	7.7 ± 0.5	146 ± 52	C ₂ H ₂ , ¹³ CCH ₂ , CH ₄ , H ₂ *, HCN
	0.68	a_{\uparrow}	Classic Com	ponents (Sub-mm to Radio Surveys)
Hot Core	02.5-7.5	5-15	ò ₁₅₀ –400	
Extended Ridge	c_{7-11}	3-5	55-70	
Compact Ridge	a_{7-9}	3-5	80-150	
Plateau	6-9	>20	95-150	

- Compact Ridge ^C7-9 3-5 80-150 —

 Plateau 6-9 >20 95-150 —

 FOTS—Columns are from left to right: central local standard of rest velocity, line full-width half-maximum, temperature, and species detected in this work only. Numbers are averages for this present work, and a typical range from other works. ^ARanges are compiled from combing Blake et al. (1987); Cenzel & Stutzki (1989); Tercero et al. (2010, 2011); Esplugues et al. (2013) with supplementary data from: ^bWilson et al. (2000) and ^cWright et al. (1996). H₂, H₂O, OH, and 2_{F2} HCN are not counted towards the average true and varyous in this work due to only two or one lines analyzed per species. ^{*} denotes emission lines. [‡] denotes the tentative
- The two kinematic component
 in this survey detected in absorption lines and H₂ emission
- Have distinct properties from the classic components
- We name them the blue and red clumps for their v_{LSR}

detection of OH.

The Blue and Red Clumps

- Uniquely identified with MIR spectroscopy
- Possibly distinct kinematic components unrelated to classic components
- Absorption species have same v_{LSR} as H₂ emission line in this survey
- Blue and red clumps may or may not be related to hot core, but high abundances suggest hot corelike chemistry regardless of their relationship
- Blue and red clumps have similar temperatures (~140 K), and FWHM (~8 km/s)
- Different v_{LSR} (-7.1 km/s for blue clump; 1.4 km/s for red clump)
- Blue clump has higher species abundances
- Every absorption species detected in this work is found in the blue clump; red clump contains a subset of these species

Column Density Ratio for Blue and						
Red Clumps						
Chasias	Dond					
Species	Band	$N_{ m blueclump}/N_{ m redclump}$				
$ortho-C_2H_2$	$ u_5$	4.19 ± 0.93				
$para-C_2H_2$	$ u_5$	3.98 ± 0.88				
$^{13}\mathrm{CCH}_2$	$ u_5$	3.80 ± 0.45				
$\operatorname{ortho-C_2H_2}$	$ u_4 + u_5 $	1.77 ± 0.50				
$para-C_2H_2$	$ u_4 + u_5 $	1.37 ± 0.31				
CH_4	$ u_4$	2.26 ± 0.56				
HCN	$ u_2$	2.91 ± 0.65				

HCN R(11) 1.0 IRc2 0.5 0.0 Normalized Intensity IRc4 1.0 0.5 0.0 747.5 747.0 748.0 748.5 Wavenumber [cm⁻¹] Lacy+2002

- Spectroscopy towards other targets shows that the blue clump is extended over IRc4, IRc7, and source n (Lacy+ 2002, Beuther+ 2010)
- Blue clump is not detected towards BN Object (Scoville+ 1983, Beuther + 2010, Indriolo+ 2018)
- Extent of the red clump is unknown

Extent of the Blue and Red Clumps

Nickerson+2022, arXiv:2211.15707

Analysis Recipe

- 1. Identify line of interest with databases HITRAN (Gordon+ 2017), GEISA (Jacquinet-Husson+ 2015), and ExoMol (Tennyson & Yurchenko 2012)
- 2. Normalize the baseline around line and atmospheric flux to 1
- 3. Divide out atmospheric flux
- 4. Fit line to a Gaussian, or two if second velocity component
- 5. Integrate under Gaussian for column density
- 6. Assuming local thermodynamic equilibrium, can fit to Boltzmann's equation (Goldsmith & Langer 1999) to obtain overall column density and excitation temperature of species:

$$\ln \frac{N_j}{g_i} = \ln \frac{N}{Q_R(T_{\rm ex})} - \frac{E}{kT_{\rm ex}}$$

N_j: transition column density g_j: transition statistical weight N: total column density

T_{ex}: excitation temperature Q_R(T_{ex}): partition function E: energy of transition k: Boltzmann constant

C₂H₂: History and Structure

- Two bands: v₅ (shown) and v₄₊₅ at different wavelengths
- In both clumps and bands, ortho and para ladders not in equilibrium, trace separate temperatures and densities; ortho-topara ratio (OPR)~1.2-2.5
- Upon formation on dust grains, H₂ OPR~3, while in cold pre-stellar cores OPR<0.001
- This shows that both clumps are closer to formation than cold gas
- Column densities are higher in both clumps for the v₄₊₅ band compared to the v₅ band, suggesting that the the v₄₊₅ band probes material deeper into the clumps

Nickerson+2022, arXiv:2211.15707

HCN, HNC, and H¹³CN: History and Mystery

- First MIR detections of HNC and H¹³CN in the ISM; complement the story of HCN
- HCN/HNC nearly equal at low temperatures (Schilke+ 1992) but HNC depletion increases with temperature (Hirota+ 1998)
- HCN/HNC=73 and with modelling pinpoint the gas's chemical age to ~10⁶ years
- ¹²C/¹³C=13 much lower than expected for Galactocentric distance; similar number found with C²H²; wider problem requires followup

Crowded Lines: SO₂

- SO₂ transitions too numerous and close together to fit individual transitions to Gaussians
- Instead produce simulated spectra from the Boltzman equation, assuming LTE
- With a Markov chain Monte Carlo algorithm (Foreman-Mackey+ 2013) find the parameters that best fit the flux in Orion IRc2
- Similar temperature ~100 K to HNC, H¹³CN, and ¹³CCH₂ in the blue clump

 $v_2 SO_2$ $T_{ex}=94 K$ $N=6.17x10^{16} cm^{-2}$ $V_{LSR}=-6.1 km/s$

New Targets: Diverse Hot Cores

- MIR-bright hot cores identified as molecular-rich by ISO
- < 7 μm covered by publications and SOFIA archival data
- New EXES observations in 2022 extend coverage: 7 to 24 μm
- Analyzing new data, and complement with archival data and publications to construct the MIR inventory of these hot cores

Preliminary: Comparing Species Abundance Ratios Across Hot Cores

- AFGL 2136 and 2591 are conventional hot cores surrounding massive protostars; Orion IRc2 atypical, externally heated
- C₂H₂/HCN similar across hot cores, other species inconsistent
- NH₃ lower in AFGL 2591
- CS lower towards Orion IRc2
- What causes these differences in molecular abundances? Orion IRc2 is expected to be different, but not AFGL 2136 and 2591
- In future will tabulate more species and hot cores

Preliminary: Comparing Species Abundance Ratios Between Observation and Simulations

- Compare to gas-grain chemical network (Acharyya & Herbst 2018) that traces hot core evolution in three phases: free fall collapse, warmup (9.35 to 9.85 × 10⁵ years), and post-warmup
- For HCN, C₂H₂, NH₃ the model matches the observed abundances at some point during its evolution for most temperature models
- CS is much lower in the model compared to the hot cores.
 Unexpectedly Orion IRc2 is the closest despite it being an atypical situation
- This suggests that there is an unknown mechanism that produces extra CS in massive star forming regions, not accounted for in theoretical models.
- In future, we will add more hot cores and species to this analysis

MIR Python Analysis Toolkit

- Publicly available analysis tools for spectroscopy are focussed on longer wavelengths, FIR to sub-mm
- Nothing for the MIR
- Developed Python Toolkit to analyze EXES and TEXES high resolution spectra; includes:
 - Visualization
 - Molecule identification using MIR line lists from databases (HITRAN, GEISA, and ExoMol), and custom line lists
 - Peak finder and noise finder
 - Fitting atmospheric models to data for subtraction
 - Rotation diagram analysis of both absorption and emission lines
 - Production and fitting of simulated spectra
- Presently not ready for public availability but happy to share and collaborate on request
- Considering public release in future

Student Projects

Jose Monzon, Yale University PhD student:

- Working on a paper that focusses on the H₂O and SiO emission lines towards Orion IRc2 with SOFIA/EXES and IRTF/ TEXES
- Associated with outflow, not the molecular absorption lines
- (Monzon+ 2023 in prep)

Ciera Knabe, University of Texas at Austin undergraduate student:

- Measuring CH₄ towards the hot core NGC 7538 IRS 1 with SOFIA/EXES
- Comparing methane across hot cores
- An important molecule to life only seen at these wavelengths
- (Knabe+ 2023 in prep)

Ultimately, What Do We Learn From Hot Cores?

Illustration: Bill Saxton, NSF/AUI/NRAO; Spectra: H₂O towards AFGL 2136 (Indriolo+ 2020)

- Massive protostars probe the state of the interstellar medium at the earliest stages of star formation
- Our own sun may have formed in a massive star-forming region
- This gas contains the precursors to probiotics that will form planetary systems such as our own
- Studying hot cores will elucidate the origins of prebiotic molecules and inform chemical modelling
- We are constructing the first MIR inventory across multiple hot cores
- The MIR accesses unique molecules and transitions
- Will inform low resolution JWST/ MIRI spectra of fainter hot cores and hot corinos around solar mass protostars, as well as protoplanetary discs

Conclusions

 With SOFIA/EXES, we have surveyed the molecular inventory towards Orion IRc2 in MIR from 7.2 to 28 µm (Nickerson+ 2022 arXiv:2211.15707, accepted to ApJ)

- Species reveal new kinematic components in the MIR that are undetectable at longer wavelengths, and clues on the history and structure of these components
- First MIR observations of HNC and H¹³CN in the ISM, along with numerous HCN transitions (Nickerson+ 2021)
- In preparation:
 - H₂O and SiO emission lines with EXES and TEXES towards IRc2 (Monzon+ 2023 in prep)
 - CH₄ absorption towards hot core tne NGC 7538 IRS 1 (Knabe+ 2023 in prep)

- Analyzing now SOFIA/EXES observations of molecular lines towards other hot cores
- Will unlock what these species reveal about the hot core's histories and physical conditions
- This high resolution work in the MIR will provide a reference to compare lower resolution JWST observations

Only SOFIA/EXES, complemented from the ground by TEXES, could do this science!

