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Overview

View of wind-blown bubbles up to 1977

Observed properties of IR bubbles (IR, radio, X-ray)
A model of a wind-blown bubble including dust

A Revised view of wind-blown bubbles

Summary and opportunities for SOFIA



Weaver et al. (1977)
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—The large-scale features of the temperature and
density structure of an interstellar bubble for which L, =
1.27 x 10°®ergss=%, no=1cm-2, and ¢ = 10° yr. ISM
means ambient interstellar medium. For a typical O7 I star,
the H 11 region would extend to ~ 3 R,.
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IR Radiation Distribution of a Wind-Blown Bubble:N49




N49 IR/Radio Image
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PAHs are absent inside HIl regions
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Ang. Diameter ~0.03° @ 5.7 kpc => R~1.5 pc



8um Observations Azimuthally averaged (+);
Model of 8um Shell Emission (solid curve)
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Dust Model Properties

Assume a static, uniform temperature, dusty bubble using Cloudy (Ferland 1998)
and Cloudy 3D (Morisset, 2004). Input parameters for the model are:

Parameter Value Reference

central star O5V Watson et al. (2008)

Mind 1.5% 107 Mg yr! | Vink et al. (2001)

distance 5.7 kpc Churchwell et al. (2006)

age ~ 10° yrs Watson et al. (2008)

< Ninner, dusty gas > | 19.1 cm™ (Best-Fit, 24 pum data)

gas & dust density

power law: r® | a=-2 Assumed

Fiames 0.6 pc (Best-Fit, 24 pum data)

2.2 pc interface of PDR shell

dust ISM grain Mathis et al. (1977)
distribution van Hoof et al. (2004)

T¢ bubble 35x10°K Our dynamical model

(Section 4.2)




Dust Properties in a Wind-Shocked
Environment

Grain Temperatures
Sputtering Timescales
Grain Residence times
Average Grain Charge
Dust Cooling Fraction



Low Grain Temperatures =>Thermal Dissociation Unimportant
Most emission at Mid-FIR Wavelengths
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Graphites slightly warmer than the silicates at same radius and grain size

Larger grains cooler than smaller grains at same radius

Decrease in temp with radius for grains of a given size is only ~20-30%
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Sputtering Timescale [yrs]
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Sputtering: Grains<0.01um are short-lived,

larger grains long-lived
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Very small grains are destroyed by sputtering on short timescales
(Sputtering timescales about the same for graphite & silicates.)
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Grain Dwell Time in the Hll Region is Short
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All grains are removed by a combination of wind drag, radiation pressure, and sputtering in less than
4 x 10* yrs launched from any point in the nebula, a small fraction of the age of the HIl region!
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Log1o[nH/crn_3]

Average Graphite Grain Charge: All Sizes
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Silicate grain charge is similar to that of graphite grains
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Dust Cooling Fraction in Shocked Wind
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Dust dominates the cooling until Compton cooling becomes important at large luminosities and
small densities. Cooling due to collisions plus photoelectric effect.
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Dust dominates cooling at Temps >a few x 10° K
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Fraction of the stellar UV flux absorbed in the wind-shocked region
(out to the 10%K gas)
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Issues

24um emission => Dust exists within HIl regions (even the
hot, wind-shocked regions)

Dust residence timescales are small relative to the age of bubbles
=>Why are grains in HIl regions?
— Need a continuous source of grains
* Perhaps from pre-existing, embedded, neutral cloudlets (Bok Globules)?

* Entrainment of neutral condensations from the PDR of the HIl region?

* Release of dust from circumstellar disks around young, lower mass stars
associated with formation of a massive YSO?

 Or some combination of the above



A New Schematic of a Dusty Wind-Blown Bubble
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Close-up: Helix Nebula




Helix Nebula: Close-up

Helix Nebula Detail
Hubble Space Telescope - WFPC2
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PRC96-13b - April 15, 1996 - ST Scl OPO - C.R. O’Dell (Rice Univ.), NASA
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Orion Proplids

Protoplanetary Disks in the Orion Nebula
Hubble Space Telescope * WFPC2

NASA, J. Bally (University of Colorado), H.Throop (SWRI), and C.R. 0'Dell (Vanderbilt University)
STScl-PRCO1-13




Orion Proplids
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L ~constant =>R2 Te? ~constant with time

E(dust)<<E(no dust)
M(dust)<<M(no dust)

Evol with & without dust very different
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Summary and some opportunities for SOFIA

* Dust Impacts on wind-blown HIl regions

— Dust is well mixed with the hot, shocked gas—Need MIR-FIR SEDs (grain size
distributions & total stellar luminosities) =>SOFIA/FORECAST/HAWK

— Dust is strongly positively charged in low density, high temp. shocked gas
* Mag. field strength & config,; Polarization? —SOFIA?

— Dust dominates cooling in the wind-shocked gas and reduces X-ray emission—MIR/FIR
spectral line/cont. intensity distributions=>SOFIA

— Temperatures (gas) and energy much lower than in absence of dust—need SOFIA
relative ionic line intensity ratios, GREAT, FIFI, CASIMIR, SAFIRE, EXES

— Radii smaller for age and ambient density than expected in absence of dust => age
estimates not simply related to size and ambient ISM density

— lonization structure => looks like a cooler central star than the actual star—SOFIA
spectrometers: nebular atomic ion (Nell, lll, IV, & V) line intensity ratios with images;
PDRs (H,(0-0, S(0-8)).

— Velocity Structure of H* & PDR—SOFIA spectrometers (wind mass loading, shocks)

— MIR-FIR brightness much greater than in absence of dust—a perfect class of objects for
SOFIA (bright and good match with SOFIA resolution)

— Theoretically grains of all sizes do not survive long enough to play an important role,
however we see grains of all sizes =>must include dust in evolution models

— Kinematic impacts due to dust?
* Relative dust-gas drift velocities are fairly large
 Need more accurate dynamical models to better assess evolutionary effects
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