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Why 
massive 
stars are 
important? 

Reason #1 
- Chemical 

Input
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Why 
massive 
stars are 
important? 

Reason #2 
- Energetic 
feedbacks

The enormous massive star feedback can be a critical source to form and maintain the shapes of the environmental GMCs!

Pabst ea 2019

Hopkins ea 2019
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Why 
massive 
stars are 
important? 

Reason #3 
- Seeds of 
SMBHs

Alister Seguel ea 2019
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Evolutionary sequence of 
High-mass stars and star clusters

(Beuther et al. 2007)

Cores to stars
→ High-mass starless cores (HMSCs) 
→ High-mass cores harboring accreting low/intermediate mass 
protostar(s) destined to become a high-mass star(s) 
→ High-mass protostellar objects (HMPOs) - HII regions
→ Final stars

Clumps to clusters
→ Massive starless clumps 
→ Protoclusters - HII regions
→ Stellar clusters

Two simple stages
- Infrared Quiescent
- Infrared Bright
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Giant HII (GHII) regions are…

- well known active massive star forming regions.

- bright across almost all wavelengths.

- only IR bright objects you can recognize easily from external galaxies.

Thus, it is important to study Galactic GHII regions to understand 

star formation even in external galaxies. 

- W51A : one of the most massive Galactic GHII regions (Lim & De Buizer 2019)

- M17 : one of the closest GHII regions in from Sun (Lim, De Buizer & Radomski 2020)

- W49A : the most luminous GHII region of the Milky Way (De Buizer et al 2021)

- DR7 & K3-50 : Galactic GHII regions as the ‘edge cases’ (De Buizer et al 2022, De Buizer et al 2023)
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Blue - 20μm, Green - 37μm, Red - 70μm, White - 3.6μmD~5.4kpc D~2kpc
Lim & De Buizer 2019 Lim, De Buizer & Radomski 2020
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Blue - 20μm, Green - 37μm, Red - 70μm, White - 3.6μm
D~11.1kpc Lim & De Buizer 2019 Lim, De Buizer & Radomski 2020
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De Buizer ea 2021



Blue - 20μm, Green - 37μm, Red - 70μm, White - 3.6μmD~7.3kpc D~7.6kpc
Lim & De Buizer 2019 Lim, De Buizer & Radomski 2020

9

De Buizer ea 2023



Spitzer MIPS 24μm

SOFIA FORCAST 20μm

Angular resolutions of
Space/Airborne Telescopes

IRAS ~ 1x4 arcmin
MSX ~ 18 arcsec

Spitzer-MIPS ~ 6 arcsec
SOFIA-FORCAST ~ 3 arcsec

Why we need SOFIA?

MSX 21μm

SOFIA FORCAST 37μm

IRAS 25μm

10

M17



Result 1.  
We have found an embedded  

population of MYSOs.
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MYSO Candidates
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K3-50DR7



MYSO Candidates

De Buizer ea 202313



MYSO Candidates

De Buizer ea 2023
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- 8 / 10 (K3-50), 3 / 4 (DR7) SOFIA 
compact sources are under MYSO 
criteria.

        c.f. 
        41/47 MYSOs from W51A
        7 / 16 MYSOs from M17
        22 / 24 MYSOs from W49A

- A MYSO in DR7 and 7 in K3-50 have no 
radio counterparts.

        c.f.
        20 MYSOs in W51A
        1 MYSO in M17
        4 MYSOs in W49A
Likely at their very early stage. Not enough 
time to expend the Strömgren Spheres. 



Result 2.  
We trace the evolutionary states of 

proto-clusters in GHII regions.
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Proto-cluster Evolution 

(Bertoldi & McKee 1992)

Higher αvir may indicate the later clump evolutionary 
stages (i.e. more internal feedback makes higher 

kinetic energy).

Virial analysis

Lbol/Mdust

Higher L/M might indicate 
older clump due to more 
formed stars and less dust 
mass (used to make stars).

Lim ea 2019
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Proto-cluster Evolution 
αvir vs. L/M
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Lim ea 2019

Lim ea 2019



Proto-cluster Evolution 
αvir vs. L/M
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Lim ea 2020



Proto-cluster Evolution 
αvir vs. L/M
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De Buizer ea 2021



Proto-cluster Evolution 
αvir vs. L/M
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- No proper molecular line data toward DR7.

- Only HCO+ (4-3) data toward K3-50 A and 

B sources.

- L / M parameters of K3-50 show relatively 

large spread (200 - 850) while DR7 has 

similar values across all 4 sources. 

This may indicate K3-50 underwent multi-phase 

star formation activities while DR7 is coeval.

De Buizer ea 2023



Proto-cluster Evolution 
αvir vs. L/M
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- W51A and M17 show various evolutionary 

stages of porto-cluster thus structures in 

these GHII regions are not coeval.

- Revealed stellar clusters (M17) and a LBV 

candidate (W51A) show the highest αvir and 

L/M values.

- All W49A proto-clusters show relatively 

consistent αvir and L/M values indicating they 

are more likely coeval. 

- The L/M spread of DR7 and K3-50 indicates 

that DR7 looks to be coeval while K3-50 

might not. 
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Result 3.  
Additional analyses imply which are 

genuine GHII regions.
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Edge case study 
Are they genuine GHII regions?

- In De Buizer et al. 2022, we argued the four observational criteria to be considered as a 

GHII region (in addition to the Lyman continuum cutoff ‘NLyC = 1050 s-1’).

1. The number of compact sources

2. The number of extended sources (sub-regions)

3. The peak flux ratio (peak source flus / total flux)

4. The mass of the most massive YSO in the area

- K3-50 is likely a GHII region and DR7 might not.

De Buizer ea 2023



Summary

- FORCAST 20, 25 & 37μm imaging survey toward 
Galactic GHII regions has been executed.

- The SOFIA data revealed a previously hidden population 
of MYSOs and gave us better understanding the physical 
nature of several already known sources.

- Independent evolutionary analyses traces unique 
histories of stellar cluster formation in GHII regions. 

- Analyses on ‘edge case GHII regions’ (K3-50 & DR7) 
indicate K3-50 is likely GHII while DR7 is not.
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