The Essentials of Chopping and Nodding

James De Buizer

Journey of a thermal IR photon

- Through the Atmosphere
 - Photon has to be in an atmospheric window
 - No clouds! They absorb source photons, give off non-source photons
 - High water vapor = decreased sensitivity at $\lambda > 25 \mu m$
- Through the Telescope and Camera
 - Telescope is at about -30C (240K), λ_{peak} =2898/240=12µm
 - Emission from whole optical system is peaked at 12μm
 - Ideally MIR cameras are fully reflective (except window and filters)
 - Detector not at focal plane. Re-imaging optics to cool detector, filters and stop stray emission

Thermal IR arrays

- Background radiation dominates at MIR
- Even bright standard stars are an order of magnitude fainter than the background
- Normal MIR observations: 1 source photon for every 100,000 background photons
- This means detector wells fill VERY quickly
 Example: For OSCIR at IRTF, the BG emission at 10μm is typically ~4x10¹³ photons/sec/cm². Given the high QE of the detector and a well depth of 22x10⁶ electrons, the well fills to 100% in 60 ms!
- Detectors must be able to perform short integration times (2-100 milli-sec)
- Unlike CCDs (charge-shift readout), thermal IR detectors have discrete sub-array readout amplifiers = Fast!
- Short integration times and fast readouts require fast electonics and high data rate handling

So, we need to get rid of atmosphere + telescope background emission...

The Chop-Nod Technique

The sky background is brighter and more *variable* in infrared:

- At J,H,K (1-2μm) sky is stable enough to get sky frame every ~60-120s
- At L (3μm, beginning to be background-limited), stable over ~20sec
- At M ($5\mu m$, a bit more bg-limited), stable for only $\sim 10 sec$
- Beyond 10μm, stable of only a fraction of a second (fully bg-limited)

"Chopping"

- Refers to differencing the source frame and a nearby patch of sky
- This is done by moving the secondary mirror @1-20 Hz
- MAIN EFFECT: Removes Sky Background

"Nodding"

- Refers to moving the whole telescope
- Performed once every 10-120 seconds
- MAIN EFFECT: Removes thermal pattern of telescope and optics

The Chopping (or Wobbling) Secondary Chop 1 Chop 2 Detector

FORCAST data is composed of multiple parts

Co-adds are saved of the source and ref frames in each nod (typically~30s for science targets)

On the plane, these can be displayed so that you can watch the S/N grow, check IQ and its variability, know when sky is not stable, etc.

FORCAST FITS files have 4 extensions, one for each source and ref frame for each nod position FORCAST saves a FITS file every nod cycle (typically every 60s)

