

Townes' Legacy and SOFIA's Science Vision

E.E. Becklin
SOFIA Chief Scientific Advisor
USRA/SOFIA

Ringberg Castle, Germany SOFIA Workshop March 16, 2015

Outline of Material

- Charlie Townes and Airborne Astronomy
- Gerry Neugebauer and IR astronomy
- SOFIA; Discoveries; and making SOFIA more productive
- Spectroscopy Science with the FORCAST GRISMS
- First FLITECAM spectroscopy results of SN 2014J in M82.
- Special experiments with SOFIA
- Summary

Charles Townes and Airborne

Astronomy

- Charles Townes died on 27 Jan, 2015 at the age of 99
- He has always been a supporter of Airborne IR/submillimeter Astronomy
- For example, in March 2014 he wrote a letter of support for SOFIA to Obama's Science Advisor, Dr Holdren
- He won the Nobel Prize in Physics in 1964 for the invention of the maser. Demonstrated in 1954 at Columbia University.
- I first meet Charlie at Caltech in about 1967
 - He was on the Caltech Board of Trustees
 - He was just moving to Berkeley to start an IR/Microwave astronomy lab.
 - He was very interested in our recent measurement of stars in the Center of the Galaxy.

Charlie Townes and Reinhard Genzel

on the KAO

Charles Townes and Airborne

Astronomy

- Charlie flew on the KAO with Graduate Students, Post Docs and other collaborators from 1978 until 1995 using Fabry-Perot Interferometers built in his lab.
- He had over 30 published papers on observations and discoveries
- First detection of high J CO and OH in the ISM
- First detection of OI, OIII and CII in External Galaxies
- First extensive maps of OI, CII, high J CO in the Galactic Center,
 Orion and other regions
- His collaborations In airborne work included: R. Genzel, J. Storey,
 D. Watson, M. Werner, G. Stacey, A. Poglitsh, S Madden, A. Betz, J
 Stutzki, Alfred Krabbe, Andy Harris and many more.

Charles Townes and SOFIA

- Charlie was one of the key people that sold SOFIA to NASA and the US congress in mid 1990's.
- He was the first Chair of the SOFIA Science Council 1997 to 2003.
- In 2006 he was our most important supporter when we were out of the NASA budget.
- He personally introduced me to both Hans-Peter Roeser (Hawaii 1982) and Rolf Guesten (Mid 1980s at Berkeley GC meeting).
- He will be missed.

Gerry Neugebauer (1932-2014) on 🚜

the KAO in 1976

Gerry fixing the Dewar while others 🚓

watch on the KAO

Figure C12. Graduate student Ian Gatley, Eric Becklin, Gerry Neugebauer, and Gordon Forrester (Caltech), 1976, making in-flight repairs to their far-infrared photometer.

"Recipes" for (SOFIA) Discoveries

- How are Discoveries made.
 - New capabilities (mainly instruments)
 - Surveys are usually important
 - Often it is a accident or a mistake (shows there are lots of discoveries out there.)

 Use the observatory more like a physics lab rather than a multi-user observatory

Vision for SOFIA

- There are some obvious areas were SOFIA will be the best for the next 10 to maybe 20 years.
 - Wavelength 30 to 300 microns (balloons are the only real competition and they are risky and limited)
 - Spectroscopy gives the highest gains because of the relatively high background radiation T>240K. Can also support large instruments.
 - Innovative instruments are a key with large a multiplex such as heterodyne arrays or MKID spectrometers
- SOFIA must allow rapid (risky) instrument development!!
- Give new and upgraded Instruments more telescope time!

SOFIA and More and Better Science 🐬

- How to get better Science
 - Work around conservative astronomy TACs (Dave Allen's story)
 - Larger multi-year proposals
 - More Director's discretionary time (increase to 20 to 30%) I will give examples later.
 - Increase the user pool. More incentives to international astronomers. More \$ to US proposers.

SOFIA Productivity

 Get more science published quickly. Follow GREAT with a large team and a considerable amount of telescope time.

We are not a "Great Observatory". Control
the tendencies to archive all data for all
future users.

 Limit the pipelines. Good users learn how to get their data reduced.

Some recent timely Spectroscopic Science with SOFIA

Nova Del Outburst of 2013

- Gehrz etal put in a proposal to observe recurrent Nova with the FORCAST GRISMs if in outburst occurred.
- On 13 Aug 2013 V339 Del was discovered to be in outburst
- Erick Young activated the Target of Opportunity (ToO)
 FORCAST GRISM and Imaging observations.
- Goal was to look for strong IR metallic forbidden lines.
- Observations were taken on 10 Sept 24 days after maximum visible light.

Nova Del with FORCAST GRISMS

SOFIA

 Results reduced by Vacca and Helton show only Ionized Hydrogen emission.

 The density is too high (>E7 per cc) and the metal lines are quenched.

- Gehrz is surprised that [NeII] is not seen based on other nova.
- A draft paper is being worked on.

FLITECAM SN2014J Data

- Supernova Type la went off in Jan 2014
 - Starting taking data at T+36 days
 - Spectroscopy + imaging
 - Activated accepted ToO proposal and Director time ToO proposals.
- Coverage R~1200 spectra from 1 to 3.3 microns
- Results are now in Press (Vacca et al 2015 ApJ)

FLITECAM and HIPO together

(FLIPO): Supernova 2014J in M82 (Vacca etal in Press)

FLITECAM SN2014J Data

SOFIA and SN 2014J in M82

- The strong line near 1.8 microns is identified as ionized Cobalt [Co II] (radioactive).
- Line width is ~10,000 km/sec.
- The models of Dessart etal show that the line is a blind of 3 lines.
- The wavelength shift seen in their models is due to the changes strengths of the 3 lines. The physics of the line changes is not discussed in the SOFIA paper.

Shift of the wavelength of the 1.77 🤼

micron emission line vs time.

Special Experiments on KAO

- The KAO did several special experiments.
- The most noteworthy was the occultation of Uranus and the discovery of the rings (Elliott and Dunham).
- The KAO also observed 2 Solar Eclipses in the 30 to 650 micron continuum.
- Determined the Height and Temperature of the extreme Solar limb (Lindsey etal)
 - Sun's limb is higher than the standard model
 - The temperature is lower than the Concord obs. (Beck etal).

Eric, Mike and Charlie on KAO for

the 1988 Solar Eclipse

Figure C80. Eric Becklin (UCLA), Mike Werner (NASA Ames), Charlie Lindsey (University of Hawaii), 1988. Lindsey developed a full aperture sun filter for the KAO primary mirror. Here he's prepared to observe the solar eclipse before, during, and after totality.

KAO 1982, 1988 and

Hawaii JCMT 1991 Eclipse Solar Limb Height verse Wavelength

SOFIA Special Experiments

- Pluto Occultation of June 2011. Hit the center line, atmosphere still there.
- FliteCam, HIPO and FDC Pluto Occultation of June 29 2015, two weeks before the New Horizons fly by.
- This Friday there is a total Solar Eclipse in Northern Europe
- Will SOFIA be able to observe a future eclipse to make unique measurements? I hope so!

Summary

- SOFIA is now producing good science, although more publications are needed.
- The best way to expand SOFIA's capabilities is with new instrumentation
- Extra Funds may mean additional partners
- Creative use of the Observatory could lead to some unique science
- Other new ideas should also be discussed.

Backup

ToOs, DDTs, and YOU

ToOs:

- Submitted during a call for proposals
 - Cycle 4 call soon! End of April 2015
- Known targets, unknown timing
 - Known novae, Comets, etc.
- (Potentially) unknown targets and/or unknown timing
 - Comets, new (super)novae, etc.
- Data proprietary period same as for the Cycle

DDTs:

- Outside the normal call for proposal period
 - http://bit.ly/sofia_ddt
- Extraordinary/unique events
 - Can still be covered by a ToO
- Brief science case sent directly to SMO Director and SOFIA Help Desk
- Data will have NO proprietary period

Example: Pluto Occultation in June 2015!

More details after March 2015 (pending astrometry updates)

