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DUST IN DISKS

Spectral Energy Distributions
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DUST IN DISKS

Spectral Energy Distributions
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DUST IN DISKS

Detailed modeling of SED to infer spatial
distribution of dust in disks.

dust condensation
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[Dullemond+ 2007]



DUST IN DISKS

Detailed modeling of SED to infer spatial
distribution of dust in disks. [Draine 2006]
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DUST IN DISKS

Detailed modeling of SED to infer spatial
distribution of dust in disks.

[Calvet + 2005]
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DUST IN DISKS

HD142527

Shadowed region

[Marino+ 2015] MCFOST

3D RT models: MCMax
RADMC
TORUS, etc.



DUST IN DISKS

®

[ALMA Partnership 2015] [Andrews+ 2016]

Gaps in ~ 1 Myr disk around HL Tau and ~ 10 Myr disk around TW Hya



DUST IN DISKS

TW Hya Disk
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DUST IN DISKS

TW Hya Disk
HST NICMOS/NIC2

F171M+F180M+F222M
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The Ophiuchus star-forming region

Elias 2-27 as seen by ALMA
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Spiral Structures



DUST IN DISKS

TW Hya Disk
HST NICMOS/NIC2

F171M+F180M+F222M

Ovsk

Many explanations for structure:

Planets

Opacity changes/snowlines

Zonal flows
Vortices

Dust traps due to pressure bumps

Kuiper Belt orbit

The Ophiuchus star-forming region

.

[Perez+ 2016]
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DUST IN DISKS

TW Hya Disk
HST NICMOS/NIC2

F171M+F180M+F222M
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Many explanations for structure:

surface brightness

* Planets
* Opacity changes/snowlines

Zonal flows
Vortices
Dust traps due to pressure bumps

DCC offset [mas]

Need underlying gas disk structure
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[Benisty+ 2016]

Kuiper Belt orbit

Spiral Structures

The Ophiuchus star-forming region O [Perez+ 2016]
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[Dutrey+ 1998]
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GAS IN DISKS

observed AA Tauri spectrum
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Spitzer studies of disks detect
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GAS IN DISKS
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GAS IN DISKS
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ESA/NASA/JPL-Caltech/M. Hogerheijde (Leiden Observatory)
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GAS IN DISKS

Emission depends on abundance hence
Chemistry which is sensitive to gas temperature
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GAS IN DISKS
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GAS IN DISKS

Heating mechanisms:
Dust, UV-grain photoelectric emission, UV pumping, X-rays, cosmic-rays,
chemical processes, viscous heating, magnetic reconnections, shocks, other local
or transient effects

Cooling mechanisms:
Emission from atoms, ions, molecules, dust

Chemistry + Radiative Transfer
+ Pressure balance (Vertical HSE)
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GAS IN DISKS

Disk density, temperature structure,

abundances with Radiative transfer
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GAS IN DISKS
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GAS IN DISKS

[Qi+ 2013, 2015]

Snow lines everywhere!

Grain surface chemistry
is important.

N,H" in TW Hya
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GAS IN DISKS

Complex chemistry in disks
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GAS IN DISKS

CO Wind from HD163296

Gas interior to dust holes
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INSIGHTS FROM DISK SURVEYS



DISK SURVEYS

Accretion rate onto star decreases with time
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[ Hartmann+ 1998 | [ Mendigutia+ 2012 ]



DISK SURVEYS

Accretion rate is proportional to dust disk mass
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DISK SURVEYS

Disk dust mass is proportional to stellar mass, relation steeper in older SFRs
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DISK SURVEYS

Detection rate of pre-organic molecules depends on stellar mass
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DISK SURVEYS

Dust disk lifetimes are ~ 3-5 Myrs
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DISK SURVEYS

Gas disk lifetimes are < 5-30 Myrs
[ Hillenbrand+ 2009 |

Gas Surface Density Upper Limits
0.1% of MMSN - Weidenschilling 1977
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DISK SURVEYS

Fedele+ 2010 -
Gas disk lifetimes are < 5-30 Myrs
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Recap:

Dust: Rings, gaps at all stages, spirals, dust grain growth and drift

* Gas: Complex species, Growing role for grain surface chemistry, slow winds

* Disk accretion rate declines with time (viscous accretion theory)

* Disk dust mass is correlated with accretion rate (accretion models predict this)

* Disk mass is correlated with stellar mass (to be expected)

* More complex molecules detected in cooler stellar environments (UV dissociation)

* Gas and Dust Disk lifetimes are < 10 Myrs (planets form, gas photoevaporates)



Many questions remain!

Recap:

Dust: Rings, gaps at all stages, spirals, dust grain growth and drift

* Gas: Complex species, Growing role for grain surface chemistry, slow winds

* Disk accretion rate declines with time (viscous accretion theory)

* Disk dust mass is correlated with accretion rate (accretion models predict this)

* Disk mass is correlated with stellar mass (to be expected)

* More complex molecules detected in cooler stellar environments (UV dissociation)

* Gas and Dust Disk lifetimes are < 10 Myrs (planets form, gas photoevaporates)



Questions we still have:

* Viscosity levels in disk (rate of transport)

What are the gas masses of disks!?

Spatial distribution of gas with time, gas/dust ratio

Rate of dispersal, gas present at late stages

Chemistry in disk and planet composition



Questions we still have:

* Viscosity levels in disk (rate of transport)

Zonal Flows
y

....................................

[ Bethune+ 2016 ]

Measure turbulence in more disks

[ Gressel+ 2015 ]



Questions we still have:

* What are the gas masses of disks!?

e HD55um and 112um — mass tracer

COJ=23-22 * ALMA and spatial/velocity resolved
CO isotope data

e CO depleted in disks ?
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Questions we still have:

 Spatial distribution of gas with time, gas/dust ratio

Multiwavelength surveys of disks probing different regions

vertical

VLT-CRIRES mixing
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[ van Dishoeck 2014 ]



Questions we still have:

* Rate of dispersal, gas present at late stages

Blue-shifted Nell

Slow winds from disks:
Current mass loss estimates range from

1011 to 107 M, yrt !
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Double—component

[ Banzatti &
Pontoppidan 1200 vi
2015]

Questions we still have:

* Rate of dispersal, gas present at late stages ~
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Questions we still have:

* Chemistry in disks and planet composition [ Blevins+ 2016 |

Water is key molecule —icy grains have implication
for planet formation.

Ground state transitions of H20, OH in the far-infrared :
[ most disk gas is cold] | "0 padius vl

Ol and Cll — provide measures of the C/O ratio at surface

Velocity [km/s]



Questions we still have:

* Chemistry in disks and planet composition

[ Min+ 2016 ]

Water is key molecule —icy grains have implication
for planet formation.

Ground state transitions of H20, OH in the far-infrared
[ most disk gas is cold]

Ol and Cll — provide measures of the C/O ratio at surface

warmup series (T=50K)
direct deposit (T=50K)

H20 depletion — Icy grains and planet formation | ooldown series (T=50K)

80% of Oinice




Questions we still have:

* Viscosity levels in disk (rate of transport)
* What are the gas masses of disks? HD
* Spatial distribution of gas with time, gas/dust ratio HD Ol

* Rate of dispersal, gas present at late stages Ol Cl|

111

* Chemistry in disks and planet composition H,O OH

The Far Infrared is a key piece of the puzzle

Thank you!



