Protoplanetary Disks

Uma Gorti (SETI Institute/NASA Ames)

STAGES OF STAR FORMATION

STAGES OF STAR FORMATION

Spectral Energy Distributions

[Lada 1987; Andre et al. 1993]

Disk Dissipation: Class II SED evolves with time along multiple pathways

Detailed modeling of SED to infer spatial distribution of dust in disks.

[Dullemond+ 2007]

Detailed modeling of SED to infer spatial distribution of dust in disks

Detailed modeling of SED to infer spatial distribution of dust in disks.

SED model of TW Hya

[Marino+ 2015]

MCFOST
3D RT models: MCMax
RADMC
TORUS, etc.

Gaps in $^{\sim}$ 1 Myr disk around HL Tau and $^{\sim}$ 10 Myr disk around TW Hya

0.1

-0.8

-0.4

1.3 mm DEC offset (arcsec)

0.0

VLA 7.0 mm 7.0 mm

-0.8

0.4

0.2

0.9

0.1

0.2

0.3

0.4 0.5

-0.2

0.4

o.0 DEC offset (arcsec)

-0.4

-0.4

Intensity (mJy/beam)

0.4

0.0

RA offset (arcsec)

-0.4

Gaps and rings at all wavelengths

[Dutrey+ 1998]

CO from disk shows Keplerian rotation

[Carr & Najita 2008]

[Salyk+ 2008]

[Najita+ 2010]

Spitzer studies of disks detect H₂O, OH, NeII and organics

[Hogerheijde+ 2010]

[Thi+ 2010]

[Bergin+ 2013]

Herschel detects water, HD and OI from disks

Goran Sandell's talk on OI

[Hogerheijde+ 2010]

[Thi+ 2010]

[Bergin+ 2013]

Herschel detects water, HD and OI from disks

Interpretation not straightforward

Emission depends on abundance hence Chemistry which is sensitive to gas temperature

[van Dishoeck 2014]

[Bergin & van Dishoeck 2012]

Gas and dust temperatures are not equal

Need for thermochemical modeling

Heating mechanisms:

Dust, UV-grain photoelectric emission, UV pumping, X-rays, cosmic-rays, chemical processes, viscous heating, magnetic reconnections, shocks, other local or transient effects

Cooling mechanisms:

Emission from atoms, ions, molecules, dust

Chemistry + Radiative Transfer + Pressure balance (Vertical HSE)

Disk density, temperature structure, abundances with Radiative transfer

[Bergin+ 2013]

Turbulence in HD 163296 is low $(\alpha < 0.003)$

Mass of disk around TW Hya

[Flaherty+ 2015]

[Qi+ 2013, 2015]

Snow lines everywhere!

Grain surface chemistry is important.

N₂H⁺ in TW Hya

DCO⁺ in IM LUP

[Oberg+ 2015]

Complex chemistry in disks

[Oberg+ 2015]

CO Wind from HD163296

[Klaassen+ 2013]

Gas interior to dust holes

Accretion rate onto star decreases with time

[Hartmann+ 1998]

[Mendigutia+ 2012]

Accretion rate is proportional to dust disk mass

Disk dust mass is proportional to stellar mass, relation steeper in older SFRs

Detection rate of pre-organic molecules depends on stellar mass

Dust disk lifetimes are ~ 3-5 Myrs

[Ribas+ 2015]

DISK SURVEYS

Gas disk lifetimes are < 5-30 Myrs

[Dent+ 2013]

DISK SURVEYS

Recap:

- Dust: Rings, gaps at all stages, spirals, dust grain growth and drift
- Gas: Complex species, Growing role for grain surface chemistry, slow winds
- Disk accretion rate declines with time (viscous accretion theory)
- Disk dust mass is correlated with accretion rate (accretion models predict this)
- Disk mass is correlated with stellar mass (to be expected)
- More complex molecules detected in cooler stellar environments (UV dissociation)
- Gas and Dust Disk lifetimes are < 10 Myrs (planets form, gas photoevaporates)

Many questions remain!

Recap:

- Dust: Rings, gaps at all stages, spirals, dust grain growth and drift
- Gas: Complex species, Growing role for grain surface chemistry, slow winds
- Disk accretion rate declines with time (viscous accretion theory)
- Disk dust mass is correlated with accretion rate (accretion models predict this)
- Disk mass is correlated with stellar mass (to be expected)
- More complex molecules detected in cooler stellar environments (UV dissociation)
- Gas and Dust Disk lifetimes are < 10 Myrs (planets form, gas photoevaporates)

- Viscosity levels in disk (rate of transport)
- What are the gas masses of disks?
- Spatial distribution of gas with time, gas/dust ratio
- Rate of dispersal, gas present at late stages
- Chemistry in disk and planet composition

• Viscosity levels in disk (rate of transport)

Turbulence

[Bethune+ 2016]

Measure turbulence in more disks

• What are the gas masses of disks?

- HD 55um and 112um mass tracer
- ALMA and spatial/velocity resolved
 CO isotope data
- CO depleted in disks?

Melissa McClure's talk

[Bergin+ 2013]

• Spatial distribution of gas with time, gas/dust ratio

Multiwavelength surveys of disks probing different regions

• Rate of dispersal, gas present at late stages

Blue-shifted NeII

Slow winds from disks: Current mass loss estimates range from 10^{-11} to 10^{-7} M_o yr⁻¹!

[Pascucci+ 2012]

[Banzatti & Pontoppidan 2015]

Double-component 12CO v1 NC 12CO v2 BC

Questions we still have:

• Rate of dispersal, gas present at late stages

Winds in other tracers [OI]6300A, CO vib. lines

Chemistry in disks and planet composition

[Blevins+ 2016]

Water is key molecule – icy grains have implication for planet formation.

Ground state transitions of H2O, OH in the far-infrared [most disk gas is cold]

OI and CII – provide measures of the C/O ratio at surface

Chemistry in disks and planet composition

[Min+ 2016]

Water is key molecule – icy grains have implication for planet formation.

Ground state transitions of H2O, OH in the far-infrared [most disk gas is cold]

OI and CII – provide measures of the C/O ratio at surface

H2O depletion – Icy grains and planet formation

- Viscosity levels in disk (rate of transport)
- What are the gas masses of disks? HD
- Spatial distribution of gas with time, gas/dust ratio HD OI
- Rate of dispersal, gas present at late stages OI CII
- Chemistry in disks and planet composition H₂O OH

The Far Infrared is a key piece of the puzzle