Solar System Science for SOFIA

Dale P. Cruikshank

NASA Ames Research Center

Asilomar, June 7-8, 2010

Solar System science in the SOFIA science vision document, 2009

- Primitive bodies
 - Trans-Neptunian objects (TNOs), centaurs and asteroids
 - Atmospheres of TNOs from stellar occultations
 - Comets—mineralogy, water, organic molecules
- Extrasolar planetary material
- Giant planets
 - Global studies, atmospheric chemistry, spatial/temporal variations
- Venus
 - Atmospheric structure, chemical and isotopic composition
- Titan, a prebiological organic laboratory
 - Atmospheric chemistry

Occultations of stars by Trans-Neptunian Objects (TNOs) with SOFIA

- Objectives
 - Establish accurate diameters
 - Probe for atmospheres
 - Search for close companions
- Approach
 - Target brightest TNOs
 - Observe from optimum locations
 - Make simultaneous optical/IR observations with HIPO and FLITECAM
- Prediction Strategy
 - Improve orbits for the largest (~30) KBOs
 - Maintain list of possible events
 - Refine astrometry for the best possibilities
 - Select events to observe (error $\leq 1500 \text{ km}$)
 - Final prediction refinement in flight?

Typical large TNO shadow path

Slide from Ed Erickson

The ices of Triton and Pluto N₂ CH₄ H₂O CO (CO₂)

Trans-Neptunian Objects: Spectral evidence for thin atmospheres

- CH₄ ice bands shifted in wavelength
 - Indicates that CH₄ occurs in an N₂ matrix
- Presence of the 2.15- µm N₂ ice band
 - The β phase of N₂ implies that T > 36 K
- Therefore, the "high" temperature implies an atmospheric pressure of several microbars of N₂
- Occultation lightcurves from SOFIA can give information on atmospheric structure and presence of haze layers

Comet spectra and protoplanetary and debris disks compared

Jupiter is a changing planet ...

Disappearance of the South Equatorial Belt, 2009-2010

Jupiter • July 23, 2009
Hubble Space Telescope
Wide Field Camera 3

Impact scar in the atmosphere, 2009

Neptune's pressure-induced H₂ spectrum

Key: ISO SWS, Orton's model, + Spitzer IRS LH

The atmospheres of Saturn, Uranus and Neptune are seasonally variable

■ The 20-year lifetime of SOFIA corresponds to the transition of Uranus from equinox to solstice

An outstanding problem: Methane on Mars?

A problem for EXES at high spectral resolution and smaller telluric CH₄ column abundance

The CH₄ detection is based on a doppler-shifted Mars lines seen on the wings of lines in the telluric CH₄ band at 3.35 μm

Recent Discoveries, 2.5-5 µm – H₂O ice and Organic Solids on an Asteroid

H₂O ice coating on surface grains, asteroid 24 Themis

"Main Belt" comets may have near-surface ice

Organic signatures on 24 Themis after removal of H₂O ice band:

Green = PAHs

Violet = Asphaltite

Blue = Carbonaceous meteorite

Rivkin et al., Campins et al. 2010

Recent Discoveries, 2.5-5 µm – Carbonate minerals on an asteroid reveal a history of liquid water

The asteroid parent bodies of carbonaceous meteorites were also altered by liquid H₂O

Spectroscopy of Trans-Neptunian Objects 0.5-2.5 µm

CH₄-bearing TNOs

Colors range from neutral to red, both with and without H₂O ice.

Barucci et al.

Importance of Extending Spectral Coverage to 5 µm

Triton spectrum 2.5 - 5 μm (Akari)

AKARI spectrum with grism. Resolution $\lambda/\Delta\lambda = 135$ (Preliminary version of the figure)

Isotopes in Ices

5 – 25 µm Thermal Emission Spectra (Spitzer) I.

Trojan asteroid 624 Hektor and two comets.

All show similar mineral emission features (primarily olivine)

5 – 25 μm Thermal Emission Spectra (Spitzer) II.

Other primitive asteroids (*C*, *P*, and *D* types) having no diagnostic mineral bands in the near-IR, show mineral emission bands with differing detailed structures.

5 – 25 μm emission spectra may be the only way to determine their compositions.

6.2-µm Emission Feature on Asteroids (*Spitzer* spectra)

Most asteroids show an emission feature at 6.2 µm that is presently unidentified.

May be <u>hydrous silicates</u>, <u>organics</u>, or <u>carbonates</u>. It is seen on asteroids showing no other evidence of hydration or organic materials.

Summary - I

■ The region 2.5 - 5 µm is especially rich in molecular bands in ices and organic solids

■ The region > 5 µm is especially valuable for mineral identification, surface thermal properties, and comparisons of Solar System bodies to other sources

Summary - II

- High-speed photometry is well addressed by HIPO
- High-resolution spectroscopy for Solar System bodies is well in hand in the first generation SOFIA instruments
- Low-resolution (R = 100 1000) spectra measured simultaneously in a broad spectral range (2.4 25 μm) are needed
 - Many small bodies can be observed
 - This spectral region includes reflected sunlight and thermal emission regions
 - Opens previously unobserved spectral regions of great importance in understanding origin and evolution of Solar System bodies.
 - High sensitivity more important than spectral resolution