Characterization of Extrasolar Planets using SOFIA

Drake Deming
NASA's Goddard Space Flight Center

Asilomar, June 2010

First part of this talk:

the landscape of extrasolar planets why focus on transiting planets some history, Spitzer results

Posters by Angerhausen & Krabbe + HIPO poster by Dunham et al.

Then:

Hot Jupiters: a problem in atmospheric structure - also hot super-Earths

What observations we need to make progress What SOFIA can currently do

- and comments on optimized instruments

Exploit transits to characterize exoplanet atmospheres...

few x 10⁻⁴ HIPO + FLITECAM

Methane and water vapor in transmission (HD189733b)

Arguably, SOFIA continuous viewing is a good tradeoff for some telluric water...

Emitted/reflected spectra of hot Jupiters in the paleolithic age (1999-2003)

"First Light" Thermal Emission

Spitzer enables direct detection of IR light from the planets

eclipse depth \sim $(R_p/R_{star})^2(T_p/T_{star})$

yields T ~ 1100K

Six Spitzer photometric bands can give a low resolution spectrum of the planet

Eclipse of HD 189733B

eclipse depth \sim $(R_p/R_{star})^2(T_p/T_{star})$

Dominant term

 $T_p \sim T_{star} \Delta^{0.5}$

Iower main-sequence stars allow high S/N planet detection

HD 189733b (K3V)

 32σ detection at 16 μm

Deming et al. 2006, ApJ 644, 560

An Exoplanet Spectrum (R ~ 100)

The MEarth Project ·

Charbonneau et al.

- Using 8 X 16-inch telescopes to survey the 2000 nearest M-dwarfs for rocky planets in their habitable zones
- Converted an existing abandoned building on Mt Hopkins, AZ
- Fully operational; southern version planned
- These planets will be amenable to spectroscopic follow-up to search for atmospheric biomarkers

The First MEarth Super-Earth

TrEs-4 – apparently an inverted atmosphere

Knutson et al. ApJ 691, 866 (2009)

The *very hot* Jupiters atmospheres perturbed by strong irradiation?

losing mass by tidal stripping?

High S/N for WASP-12 at filter resolution

Instrument considerations:

maximize the spectral range

R ~ 100 is OK

maximize stability

consider λ-dithering

hot super-Earths?

Conclusions and comments

- SOFIA with current instruments can make significant progress on the science of transiting exoplanets
 - Mass loss and atmospheric structure of very hot Jupiters
 - Complementary to Warm Spitzer
 - possibly can characterize hot M-dwarf super-Earths

• Instrument enhancements should concentrate on stable 1 -5 µm spectroscopy, maximizing the spectral range at relatively low spectral resolution