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PDRs are the places where molecular clouds are 
destroyed by UV radiation of  forming massive stars 
allowing to study the stars' effect on the ISM. FIFI-LS is 
SOFIA's far infrared (FIR) spectrometer. Its wavelength 
range covers many strong fine-structure lines, which 
trace changes in densities and temperatures in the 
PDRs. Preliminary results of  FIFI-LS observations of  
galactic PDRs are displayed. We obtained large maps in 
several transition of  M42 and M17-SW and other 
galactic PDRs. 

ABSTRACT 

Photo-dissociation regions or photon-dominated 
regions (PDRs) are the interfaces between ionized HII-
regions and adjacent molecular clouds. They appear 
typically in massive star-forming regions. The young 
massive (proto-)stars destroy their parental cloud with 
their UV radiation. As shown below (from Hollenbach 
and Tielens, 1999), the UV radiation, as it ionizes and 
dissociates hydrogen and other atoms and molecules, it 
creates layers on the surface of  the molecular cloud, 
which can be traced in the FIR by fine-structure lines of  
oxygen and carbon, which happen to be the major 
cooling lines and diagnostics for density and 
temperature.  

PDRs 

M17-SW 

M42 

M17-SW 

M17-SW is an edge-on PDR irradiated from the 
north-east. Embedded in the PDR is an ultra-
compact HII region M17 UC1(Felli et al, 1984). It 
is used as reference in the plots. The FIFI-LS 
maps from the left: 

•  Ions and neutrals are clearly layered. Also, 
see the plot of  line intensities along the cut.  

•  The neutral oxygen line ratio varies with the 
146µm line relative to the 63µm line gaining in 
strength in the denser molecular cloud. 

•  The peaks in the continuum emission from the 
molecular cloud also vary in position with 
wavelength indicating a heated surface. Also, 
see the plot of  continuum intensities along the 
cut. 

•  Continuum and line emissions peak around 
UC1, but the peaks shift about 30” depending 
on wavelength and transition, respectively. 

Like M42, M17-SW offers a laboratory for a 
detailed study of  a PDR, how UV radiation 
erodes a molecular cloud. The next step will be a 
quantitative analysis of  line intensities and ratios 
to derive physical quantities, heating and 
cooling, and destruction rates. 
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How are molecular clouds eroded? 

Normalized Line Intensities

-100 -50 0 50 100
arc seconds

0.0
0.2

0.4

0.6

0.8

1.0
[OIII]52µm
[OIII]88µm
[NIII]57µm
[CII]158µm
[OI]63µm
[OI]145µm

Normalized Continuum Intensities

-100 -50 0 50 100
arc seconds

0.0
0.2

0.4

0.6

0.8

1.0
57µm
63µm
88µm
146µm
158µm

3 2 1 0 -1 -2
arc minutes

-3

-2

-1

0

1

2

3

ar
c 

m
in

ut
es

M17-SW Continuum

reference pos.  R.A. 18h20m24.s82  DEC  -16o11’34."9  (2000)

158µm
153µm
146µm
 88µm
 63µm
 57µm

2 1 0 -1 -2
arc minutes

-3

-2

-1

0

1

2

ar
c 

m
in

ut
es

M17-SW Fine-structure Lines
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M42 - [CII] flux

Image: linear stretch; log contours  for 158µm contiuum
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M42 - continuum at 158µm

Image: log stretch;  linear contours for [CII] flux

Normalized Line Intensities

-100 -50 0 50 100
arc seconds

0.0
0.2

0.4

0.6

0.8

1.0
[OIII]52µm
[OIII]88µm
[NIII]57µm
[CII]158µm
[OI]63µm
[OI]145µm

Normalized Continuum Intensities

-100 -50 0 50 100
arc seconds

0.0
0.2

0.4

0.6

0.8

1.0
57µm
63µm
88µm
146µm
158µm

The continuum shows BN/
KL, the bar and more of  
the cloud surrounding the 
HII region. 
 

The lines in the regions are so bright, that FIFI-
LS’s fast mapping mode was employed often 
even without overlapping the small “blue” field of  
view. The lack of  overlap and imperfections in 
the flat-field lead to instrumental artifacts in the 
resulting images. 
FIFI-LS’s final data product is a data cube. To 
derive line flux and continuum maps, FLUXER1 
was used to fit a Gaussian  plus a linear baseline 
to each spectrum in the data cube (screen shot 
below). If  a strong telluric feature was within the 
spectrum, the baseline was fitted with ATRAN 
(Lord, 1992). 
 

Preliminary results: 
The [OIII] linåe ratio varies from the HII  
åregion into the bar: Te ~104K; Ne ~ 103cm-3 

The increase towards the bar indicates an 
increase in density. 
 

FIFI-LS obtained large maps 
of  M42. Here is a small 
sampler: 
[CII] and both [OIII]. 
[CII]: Wide spread, strong in 
cavity cleared by the 
Trapezium, peaks along 
cavity walls. 
[OIII] ratio: temperature and 
                    density indicator 

BN/KL 

NE NE SW SW 

The ultraviolet flux from, for example, the interstellar
radiation field (ISRF) or from nearby hot stars is inci-
dent on a neutral cloud of hydrogen nucleus density n .
The incident far-ultraviolet flux G0 (in units of an aver-
age interstellar flux between 6 eV&hn&13.6 eV of 1.6
31023 erg cm22 s21; Habing, 1968) can range from the
local average ISRF (G0;1.7; Draine, 1978) to G0
*106, appropriate, for example, to gas closer than 0.1 pc
from an O star.7 Typically, densities n range from
;0.25 cm23 in the warm neutral medium to
;10–100 cm23 in diffuse clouds, to ;103–107 cm23 in
the PDRs associated with molecular gas. As illustrated
in Fig. 3, PDRs are often overlaid with HII gas and a
thin HII/HI interface that absorb the Lyman continuum
photons. Although dependent on the ratio G0 /n , the
PDR itself is often characterized by a layer of atomic
hydrogen which extends to a depth AV;1–2 (or a hy-
drogen nucleus column of N52–431021 cm22) from the
ionization front (near-infrared emission from PAH mol-
ecules absorbing the starlight peaks here), far-
ultraviolet-pumped H2 emission peaking at the HI/H2
interface, a layer of C1 which extends to a depth AV
;2–4, and a layer of atomic oxygen which extends to a

depth AV;5–10. Atomic carbon largely exists near the
C1/CO interface. Figure 2 observationally shows this
morphology in PAH, H2, and CO emission. The H, C1,
and O layers are maintained by the far-ultraviolet pho-
todissociation of molecules and photoionization of C.
Diffuse clouds or warm-neutral-medium gas typically
have AV&2, so they are often nearly entirely atomic.

Traditionally, PDRs have been associated with atomic
gas. However, with the above definition, PDRs include
material in which the hydrogen is molecular and the car-
bon mostly in CO, but where far-ultraviolet flux still
strongly affects the chemistry of oxygen and carbon not
locked in CO (photodissociating OH, O2, and H2O, for
example) and the ionization fraction. The transition
from C1 to CO occurs in PDRs, and CO is arguably the
most important molecule in astrophysics. Although H2 is
more abundant, CO is more readily observed and has
been used extensively as a tracer of molecular gas and
star-forming regions. With the exception of the molecu-
lar gas in dense, star-forming cores, most molecular gas
in the Galaxy is found at AV&10 in giant molecular
clouds. Therefore, all of the atomic and at least 90% of
the molecular gas in the Galaxy is in PDRs.

Not only do PDRs include most of the mass of the
interstellar medium, but PDRs are the origin of much of
the IR radiation from the ISM (the other significant
sources are HII regions and dust heated by stars too
cool to emit appreciable far-ultraviolet radiation). The
incident starlight is absorbed primarily by large carbon
molecules (polycyclic aromatic hydrocarbons or PAHs)
and grains inside a depth AV;1. Most of the absorbed
energy is used to excite the PAHs and heat the grains
and is converted to PAH infrared features and far-
infrared continuum radiation of the cooling grains.
However, typically 0.1–1% of the absorbed far-
ultraviolet energy is converted to energetic (;1 eV)
photoelectrons that are ejected from PAHs and grains
and that heat the gas (‘‘photoelectric heating’’). Al-
though the gas receives 102–103 times less heating en-
ergy per unit volume than the dust, the gas attains
higher equilibrium temperatures, T.Tgr , because of its
much less efficient cooling (via [CII] 158 mm and [OI] 63
mm) relative to the radiative dust cooling. Much of the
[CII], [OI], and [SiII] fine structure, carbon recombina-
tion, H2 rotational and vibrational emission, and
CI(9850 Å) emission in galaxies originates from depths
AV&4 in PDRs. Most of the [CI] fine structure and the
CO rotational emission in galaxies comes from regions
somewhat deeper in the photodissociation regions. For
example, the 4–1000-mm spectrum of our Milky Way
Galaxy (Wright et al., 1991) obtained by the COBE sat-
ellite is dominated by PDR emission (see Fig. 4), with
the exception of the [NII] and a fraction of the [CII]
fine-structure emission, which originates in diffuse HII
gas. The [CII] fine-structure transition is often the domi-
nant cooling line from the ISM of a galaxy.

Astronomers use a number of acronyms and units that
will be unfamiliar to physicists. We therefore define in
Table I the acronyms and units used in this review.

7G0 is an equivalent one-dimensional flux incident on a PDR;
i.e., rates of photoreactions at the surface are equal to the
photon flux given by G0 times the relevant cross sections. For
distributed sources and optically thin PDRs, such as diffuse
clouds in the interstellar radiation field, G0 is 4p times the
mean intensity. G051.7 corresponds to the Draine (1978)
ISRF in such a case. For distributed sources and an opaque
PDR, the radiation is only incident from 2p steradians at the
surface, so that G050.85 for the Draine field in this case.
However, it should be noted that the attenuation of such a
field as a function of Av into the opaque cloud is not the same
as the attenuation of a one-dimensional flux (e.g., from a single
point source) incident perpendicular to the surface.

FIG. 3. A schematic diagram of a photodissociation region.
The PDR is illuminated from the left and extends from the
predominantly atomic surface region to the point where O2 is
not appreciably photodissociated (AV.10). Hence the PDR
includes gas whose hydrogen is mainly H2 and whose carbon is
mostly CO. Large columns of warm O, C, C1, and CO, and
vibrationally excited H2 are produced in the PDR.

177D. J. Hollenbach and A. G. G. M. Tielens: Photodissociation regions in galaxies

Rev. Mod. Phys., Vol. 71, No. 1, January 1999

FIFI-LS, with its ability to map FIR fine-structure 
lines fast and efficiently, has been used to map 
M42 and M17-SW in all the bright fine-structures 
lines. Tracing the intensity of  these cooling lines 
will allow us to study in detail how the forming 
stars destroy the molecular could, how this 
feedback regulates star formation. Analyzing the 
physical conditions and heating and cooling 
rates will provide observational clues as to 
which processes drive the could destruction: 
ionization, dissociation, or dust destruction. 
 

MOTIVATION 

1http://www.ciserlohe.de/fluxer/fluxer.html 


