
Outflows and the shocks they drive
Star-formation feedback from outflows in Galactic 
young stellar objects, and the HIRMES opportunity.

Dan Watson

For the SOFIA HIRMES Instrument Team 
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Characterization of star formation requires characterization of the 
flows around protostars.

� Stars and protoplanetary disks form from inside-
out collapse of molecular cloud envelopes.

� Envelope material (E) continues to rain onto disk 
(D); disk material accretes onto star.

� Angular momentum shed by “viscous” transport 
within disk, and by magnetocentrifugally-driven 
outflows. 

� Feedback:

• Outflow (O) deposits energy and momentum 
in envelope and surroundings, perhaps 
disrupting envelope and molecular cloud.

• Disruption of envelope ends formation of 
star, determines final value of stellar mass.

• Disruption of cloud ends star-cluster 
formation in region. 
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In turn, celestial flows are often best characterized via
the shocks that they drive. 

� Flows in and around protostars are highly 
supersonic. 

� Interaction between flows thus takes the form 
of shocks. 

� The shock emission can be observed much 
more easily than quiescent gas, and used to 
derive the physical parameters of the flows.

• Images of the shocks are records of 
recent protostellar accretion history.

� Protostars are heavily obscured by dust 
extinction; must be observed at long (infrared) 
wavelengths. 

� The mid-infrared spectrum contains the 
spectral lines most useful for diagnostics.  

3

+

0.0001

0.001

0.01

0.1

1

10

5

Fl
ux

 d
en

si
ty

 (J
y)

Wavelength (µm)

[Fe II]

[Fe II]

[Fe II]

[Si II]
[Fe II]

[Fe II]

[Ni II]

[Ne II]

H2O
ice

CH3OH
-NH4

+

ice

CO2
ice

CH4
ice

Silicates, H2O ice

10                                    20                   30 

L1641 - VLA1

Silicates

HH 1-2
Hester 1997



Shocks in the interstellar medium are commonly double.

Example of outflow-driven shocks in envelopes or ambient:

� The outflow itself (“wind”), typically with speed 40-100 
km/sec, decelerates in a shock strong enough to dissociate 
molecules and ionize atoms collisionally.

• Thus a shock mostly ruled by hydrodynamics, and 
called a J- (jump) type shock. 

• May have substantial radiative and/or magnetic 
precursors. 

� The envelope or ambient material, initially cold and very 
low ionization, is accelerated to more modest speeds (10-40 
km/sec) incapable of collisional dissociation. 

• The structure of such shocks is dominated by magnetic 
effects, does not exhibit a Rankine-Hugoniot jump, 
and is called a C- (continuous) type shock. 
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Shocks in astrophysics are commonly double (continued).

Radiation from the shocks:

� Molecular lines: e.g. pure rotational H2, HD, H2O, OH, CO.

• These lines are the dominant coolant in cloud shocks.

� Yield T and mechanical-energy injection rates.

• Useful abundance ratios too, particularly HD/H2. 

� Atomic fine structure lines, primarily from low-ionization 
species: e.g. [O I], [S I], [Si II], [Fe II], [N II].

• Lower-ionization species are dominant coolants in the 
parts of the post-J-shock where T < 5000 K.

• Higher ionization states in faster shocks: lines of [Ne II], 
[S III], [O III], [N III] become prominent.
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HIRMES will have high impact in the domain of young-
stellar-object outflows and star-formation feedback.

� The HIRMES band covers many of the best probes of 
both J-type and C-type shocks, unextinguished or 
not.

� HIRMES can observe these lines with an 
unprecedentedly combination of high sensitivity and 
spectral resolution.

• HIRMES is more sensitive per pixel than 
GREAT, primarily due to quantum noise in 
coherent detection by GREAT. 

• HIRMES spectral resolution and scan coverage 
is more than sufficient to resolve outflow line 
profiles.

• And HIRMES has many more pixels than 
GREAT.

� Outflows in nearby clouds are quite bright by 
HIRMES standards, enabling both surveys and 
detailed imaging of parsec-length objects. 6

OMC-3 FIR3 outflow, observed 
with Spitzer-IRAC, Herschel 
PACS and SOFIA-GREAT 
(Megeath+ 2020).



Several advanced modelling tools are accessible 
to the community, to assist in the impact.

Thus we can be more sure than usual, that HIRMES 
observations will be exploited in detail.

� 1-D J shocks: MAPPINGS V (Dopita & 
Sutherland 2017). 

• Now uses the CHIANTI atomic database 
for its cooling data.

� 1-D C shocks: second- and third-generation 
codes by Neufeld & Kaufman (e.g. 1996), and 
by Flower & Pineau des Forets (e.g. 2000). 

• Both use BASECOL collection of molecular 
collisional excitation data. 

• Beware of degeneracies.

� 3-D adaptive-mesh-refined MHD code: 
AstroBEAR (e.g. Carroll+ 2012).

7

Synthetic emission-line images of outflow-
driven shocks from AstroBEAR (Yirak+2013).



Several advanced modelling tools are accessible to 
the community, to assist in the impact (continued).
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MAPPINGS V.
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Several advanced modelling tools are accessible to 
the community, to assist in the impact (continued).

Calculation with 
MAPPINGS V.
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But high-impact results can also be obtained in model-
independent fashion.
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Because the HIRMES band contains single lines, or 
small sets of them, that are the major coolants of 
their shock domain…

� flow rates can be measured “bolometrically,” 
from integrated line intensity…

• Like mass-flow rate, using [O I] 63.2 µm 
(Hollenbach 1985, Hollenbach & McKee 
1989; also Watson+ 2016, Dionatos & 
Güdel 2016).

• And kinetic-energy-injection rate, using 
H2 or CO lines (e.g. Kaufman & Neufeld 
1996, Maret+ 2009, Nisini+ 2015).

� and HIRMES can do this with spatially and 
spectrally resolved images, making complete 
accounts of the rates of mass, momentum, and 
energy ejection by young stellar objects.
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Redo of the Hollenbach (1985) result, using 
MAPPINGS V and up-to-date atomic 
physics. (The difference from that result is 
insignificant.)
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Visible light
Lorand Fenyes 2017

Example: protostellar outflows in NGC 1333 in J and C shock tracers

North up, east left, common scale for 
the next set of images.

� NGC 1333 itself is the reflection 
nebulosity at upper left, 
energized by a young A0-B8 star.

� Several low-serial-number HH 
objects show up in red. 

HH 12

HH 7-11

HH 6

HH 13



RGB = IRAC bands 4, 2, 1
Gutermuth et al. 2009 12

NGC 1333 (continued)

� Rob Gutermuth’s famous Spitzer 
image shows most of the YSOs. 

• Rest found in Rob’s 
Spitzer-MIPS 24 image.

� 40 of them – about a third –
rank as Class 0 or I. 

• One of the very youngest 
stellar populations known.



� Get total extinction through 
the cloud from near-IR 
excesses of background stars, 
mostly K giants.

� This gives an accurate mass of 
the NGC 1333 molecular 
cloud: 350 M:. 
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Total AV toward background stars
Gutermuth et al. 2009

NGC 1333 (continued)



� Spitzer-IRS spectral mapping 
in H2, [Fe II], [Si II].

� With HIRMES one could map 
regions like this in CO, and in 
the same J-shock tracers as 
this…

� but add kinematic 
information through HIRMES’ 
high velocity resolution, 
which could not be obtained 
from a facility besides SOFIA.

So instead of H2 in these 
images, imagine HIRMES 
imaging CO. This, and the [Fe 
II] and [Si II] lines, are all 
within HIRMES’s grasp.
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NGC 1333 (continued)
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� 17 outflows from identified 
protostars. 

• 18 if you count HH 18, 
for which we haven’t 
identified the outflow 
source.

• More than any other 
star formation region 
we know of…

• despite being 100-1000 
times smaller than some 
we know, like the Orion 
giant molecular cloud.
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NGC 1333 (continued)

HH 18
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NGC 1333 (continued)

� Zoom in on the most vigorous of the 
outflows: the one represented by 
HH 7-11.

� With HIRMES, this region could be 
imaged in 

• [Si II] and [O I] at medium 
spectral resolution with S/N 
better than 100 on the 
brightest spots;

• [O I] in high velocity resolution 
(3 km/sec), emphasizing the 
brighter HH objects, with peak 
S/N at least 50 in the profiles 
of the brightest spots;

• all in 15 hours plus calibration 
time. 

RGB = H2 v = 0 S(1), 
S(3), S(5)

16



HH 7-11

 

HH 6.9

RGB = [Fe II] 1.64 µm, 
H I Pa β 1.28 µm, [Fe II] 
1.26 µm.

By age and luminosity, 
the outflow source for 
HH 7-11 (SVS 13A) will 
probably be an A star 
someday. 17



� From extinction map, get 
total binding energy: 1046 erg. 

� From CO, get turbulent 
energy: ~2 ×1045 erg. 

� From [Fe II], [Si II], and H2, 
get outflow momentum and 
energy injection rates: 
1.4×10-3 M: km sec-1 year-1, 
and 2L: = 2×1041 erg year-1.

� From image, longest outflow 
dynamical time ~104 years.

⇒ The outflows account for 
turbulence.

⇒ They would have to stay 
numerous, to disrupt the 
cloud. 30.0 3:29:00.0 30.0 28:00.0
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NGC 1333 (continued)
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Example: outflow evolution in the HIRMES Legacy 
Science Investigation

Using [O I], [Si II], and [Fe II] (Watson+ 2016):

� Protostellar mass ejection rates 
track accretion rates        as they evolve 
through YSO classes 0, I and II.

� Typically the bipolar outflows seen in mm-
wave CO are 90-99% entrained matter.

� Large range of branching ratio, 
may indicate that all three proposed 
magnetocentrifugal acceleration 
mechanisms are represented among 
protostars.

• Accretion-powered stellar winds (e.g. 
Matt & Pudritz 2008)

• X winds (e.g. Shu et al. 2000)

• Disk winds (e.g. Königl et al. 2000)

� Need to add kinematic information from 
velocity profiles to extend to momentum 
ejection rate.
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Example: outflow evolution in the HIRMES Legacy 
Science Investigation (continued)

So we proposed to select a small sample 
biased toward the ends of the evolutionary 
sequence, and make spatially and spectrally 
resolved images, with goals of

� extracting rates of mass, momentum, 
and kinetic-energy outflow, using both 
“bolometric” and kinematic means;

� making precise and accurate
measurements to constrain the 
(unresolvable) outflow footpoint
locations;

� determine the angular momentum 
outflow rate and search for outflow 
rotation, already reported in one of our 
targets (DG Tau B; Zapata+ 2015).

� [O I]: high velocity resolution imaging; 
[O I] and [Si II]: deep medium-resolution 
imaging. 20

Target Luminosity                        Peak line flux Wall-clock
(solar) (W m-2 per pixel) time

[Si II] 34.8 µm [O I] 63.2 µm (hours)
Class 0 objects (low-mass)
HOPS 325 6.2 1.6E-17 1.6E-16 3.0
HH 211 3.6 1.0E-17 1.0E-16 11.7
HOPS 10 3.3 4.0E-17 4.0E-16 1.9
HOPS 32 2 4.5E-17 4.5E-16 1.9
SST J033327 1.7 5.8E-18 5.8E-17 6.4

Class II objects (low-mass) with outflows
DG Tau 6.4 4.5E-17 4.5E-16 1.9
DG Tau B 1 1.8E-17 1.8E-16 3.1
FS Tau (A,B) 1.4 1.3E-17 1.3E-16 1.9
UY Aur 3.1 1.6E-17 1.6E-16 1.9
RW Aur (A,B) 3.2 5.0E-18 5.0E-17 6.4

Total 40.0

� �w aM M



Summary

The grasp of SOFIA-HIRMES in star-formation feedback is 
unprecedented:

� More sensitive than GREAT at wavelengths at which 
both instruments work.

� GREAT has better spectral resolution, but HIRMES’s 
resolution is more than sufficient for outflow work.

� At least as sensitive as Herschel-PACS at 
wavelengths at which both instruments work(ed).

� Not as sensitive as Spitzer-IRS, but the difference is 
not enormous, due to HIRMES’s much greater 
spectral resolving power.

� High-impact observations of nearby YSO outflows 
can be made in a relatively small number of SOFIA 
flights. 

Visit us at www.hirmes.org. 
21

http://www.hirmes.org/
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