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Sulfur Budget Problem
● Sulfur is the 10th most abundant element in the universe

○ From observations of HII regions, the solar photosphere, and the 

diffuse interstellar medium (ISM)

● Dense clouds are severely depleted
○ Abundances as low as 5% of the cosmic value

● So where does it all go?
○ Gas-phase molecules, refractory dust grains, and icy mantles

○ A wide-variety of molecules have been observed in sub-millimeter 

wavelengths but only in very small abundances
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Fig. 1: Fraction of an Element’s cosmic abundance 
that is accounted for 4



Why do we care?
● Sulfur has an extremely rich and diverse chemistry

○ Sulfur can easily imitate oxygen in just about any molecule: e.g., 

ethanol (C
2

H
6

O) and ethanethiol (C
2

H
6

S)

○ Sulfur is second to only carbon in the number of allotropes it has

● Sulfuretted molecules can be used for a variety of purposes
○ Tracers of evolution in protostellar environments (i.e., chemical 

clocks)

○ Connect primitive solar system objects with conditions in the 

protosolar envelope

○ Sulfur is necessary for life as we know it
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How do we chip away at this?
● We focus on SO

2
 specifically, one of the simpler sulfuretted 

molecules
○ SO

2
 is one of the three molecules thought to be useful in the 

“chemical clocks” approach to measuring hot core age

○ SO
2

 measurements in the mid-infrared and sub-millimeter find 

differing abundances

○ SO
2

’s formation pathway is not well understood
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Invisible to the eye
● Sub-millimeter observations

○ Lower resolution only probes the colder broader gas around these 

objects

● Mid-infrared wavelengths enable two possibilities
○ Ice-phase observations

■ Have proven very difficult, yielding non-detections or very low 

abundances

○ Warm gas-phase absorption

■ Allow us to directly probe the chemistry of the hot core itself
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Observations: Past...
● Sub-millimeter emission from the gas-phase SO

2
 (van der Tak 

et al. 2003)
○ Yields a very low abundance (roughly 0.1% the cosmic sulfur 

abundance)

● Mid-infrared absorption (previously done by Infrared Space 

Observatory, Keane et al. 2001)
○ Indicate a much higher abundance (by over 2 orders of magnitude) 

SO
2

 gas in the hot core

○ Leads us to the question, where does it come from?
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Observations: … & Present
● We use the Echelon-Cross-Echelle Spectrograph (EXES) for 

SO
2

○ Gas-phase absorption at high resolution (R of 55,000)

○ Covers a band around 7.3 μm

○ High R is the key, it allows us to resolve individual lines

● We also have Keck NIRSPEC observations for CO to 

determine relative abundances
○ Gas-phase absorption at medium resolution (R of 25,000)

○ M-band spectra
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YSO

Hot Cores
Outflows/Shocks

Hot Core

Icy Envelope

● Envelope of warm, 
dense gas around a 
young stellar object
○ Ices have evaporated

● These conditions lead 
to a rich chemistry
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YSO

What the Sub-mm missed

To the Observer

● Absorption along line 
of sight allows us to 
probe the region 
closest to the young 
stellar object (YSO)
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LTE Models
● We generate model spectra through a local thermodynamic 

equilibrium (LTE) model
○ Three input parameters: Excitation Temperature (T

ex
), Column 

Density (N
col

), and Doppler Parameter (b
dop

)

● Likelihood is computed by using a χ2 value
○ Best fit is chosen by minimization

○ Error bars are found by Monte Carlo Markov Chain sampling to 

determine the likelihood distributions for each input parameter
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Fig. 2: Example LTE Models for SO2
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Best Fit
● SO

2
 gas with a temperature of 234±15 K

○ We call this the warm component, our data only allowed for upper 

limits on the cold foreground component

● Warm SO
2

 abundance limit of SO
2

/H > (5.6±0.5)x10-7

○ Accounts for >4% of the cosmic S abundance

○ Limit due to lower resolution of CO data

● Linewidth of b < 3.20 km s-1

○ On the edge of being resolved by the instrument

14



Fig. 3a: Subset of SO2 Spectrum with Best Fit

H
2
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Fig. 3b: Subset of SO2 Spectrum with Best Fit
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Fig. 4: Line Profiles
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Model + Data w/
R = 25,000
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R = 25,000
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Origin of SO2: Radiative Heating
● Gas-phase formation: sulfuretted ices sublimate before 

forming SO
2

○ Expect high temperatures due to location in hot core

○ Expect narrow linewidths due to quiescent gas

H
2
S?

S
2
? OCS?

SO
2

??

??

SO

OH
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● Ice-phase formation: sulfuretted ices evolve into an SO
2

 ice 

before sublimating
○ Expect high temperatures due to location in hot core

○ Expect narrow linewidths due to quiescent gas

H
2
S?

S
2
? OCS?

Origin of SO2: Radiative Heating

SO
2

SO
2
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● Gas-phase formation: sulfur locked in the dust is released 

enabling gas-phase formation
○ Expect low temperatures due to rapid post-shock cooling

○ Expect broad linewidths due to shock wave passing through gas

Origin of SO2: Shock heating

FeS?
Sputtered 
Material

H
2
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S
2
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Best Fit
● SO

2
 gas with a temperature of 234±15 K

○ We call this the warm component, our data only allowed for upper 

limits on the cold foreground component

● Warm SO
2

 abundance limit of SO
2

/H > (5.6±0.5)x10-7

○ Accounts for >4% of the cosmic S abundance

○ Limit due to lower resolution of CO data

● Linewidth of b < 3.20 km s-1

○ On the edge of being resolved by the instrument
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Radiative vs Shocks
● SO

2
 gas with a temperature of 234±15 K

○ We call this the warm component, our data only allowed for upper 

limits on the cold foreground component

● Warm SO
2

 abundance limit of SO
2

/H > (5.6±0.5)x10-7

○ Accounts for >4% of the cosmic S abundance

○ Limit due to lower resolution of CO data

● Linewidth of b < 3.20 km s-1

○ On the edge of being resolved by the instrument

Consistent with a radiative heating picture
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Radiative vs Shocks
● SO

2
 gas with a temperature of 234±15 K

○ We call this the warm component, our data only allowed for upper 

limits on the cold foreground component

● Warm SO
2

 abundance limit of SO
2

/H > (5.6±0.5)x10-7

○ Larger than that derived for Orion IRc 2 (2x10-7; Blake et al. 1987)

○ Consistent with that of HH 212 (4–12x10-7; Podio et al. 2015)

● Linewidth of b < 3.20 km s-1

○ On the edge of being resolved by the instrument

Hot core formation of SO
2

 is at least as efficient as shock 
formation 23



Ice-phase vs Gas-phase
● Ice-phase SO

2
 measurements find extremely low abundances

○ The ice-phase SO
2

/H
2

O abundance is 0.6x10-2 *

○ The warm gas-phase SO
2

/H
2

O abundance is (10.0±3.0)x10-2

● Mismatch between ice-phase and warm gas-phase 

abundances implies SO
2

 can not be sublimating directly 
from the ice

*Calculated with values from Zasowski et al. 2009 (SO
2

) and Gibb et al. 2004 (H
2

O) 24



Then what’s in the ice?
● H

2
S is the chemical model’s molecule of choice

○ H
2

S is the dominant sulfur-bearer (roughly 60%) in comets 

(Calmonte et al. 2016)

○ H
2

S ice measurements are, at best, upper limits, and half the 

abundance we measure for warm SO
2

 gas

● We believe the ice must be releasing sulfur allotropes
○ Sulfur allotropes are the next largest sulfur-bearer in comets

○ They are also highly volatile, leading to sublimation at low 

temperatures

○ Difficult to observe
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Future work
● Higher resolution CO data with iShell

○ Data has been collected and reduced, awaiting analysis

● More targets
○ W3 IRS5, data collected and mostly reduced

■ Problems with standard star introduced excess noise in SO
2

 data
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Conclusions
● SO

2
 in Mon R2 IRS 3 is consistent with a radiative heating 

model

● The hot core formation of SO
2

 is at least as efficient as the 

shock formation

● SO
2 

is unlikely to be forming in the ice

● Sulfur allotropes may be required to explain sulfur chemistry 

in molecular clouds
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