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RED SUPERGIANTS

- Evolved massive stars (8-25 @
Mo)

- Direct progenitors to Type Il ..n
SN - powerful test of stellar
evolutionary theory

Epsilon Eridani

oSirius B o
: [
Proxima Centauri
o
Procyon B

Hot —ifesessssssssiiiis-— COO|




EVOLUTION OF A 15My STAR

H-burning shell
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Core contracts... star swells up



EVOLUTION OF A 15My STAR

H-burning shell

Envelope H-burning core ’ He-burning core

Envelope

Core contracts, star swells up.
Lots of convection in the envelope



EVOLUTION TO RSG PHASE
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THE PATH TO SUPERNOVA

- He-core gets exhausted, fuses into carbon core, which fuses
into oxygen, which fuses into neon...

- Core gets heavier and heavier

- No more nuclear reactions

- Star collapses onto the core...

Core-collapse supernovae




THE PATH TO SUPERNOVA

What kind of SN depends on
the appearance of the
progenitor at core collapse
Strong winds peel away
envelope

RSGs live ~10° yrs, mass-loss
timescale (M/Mdot) is about
the same

Whole envelope can be peeled
off through lifetime




TWO OPTIONS...

‘Wolf-Rayet’ (hot - RSG/YSG progenitor
progenitor) H-rich envelope intact
Stripped/H-poor SN (type Unstripped SN (Type Il)
lbc)




We know RSGs explode as II-P SNe
SN —> check archival images —> identity progenitor

Pre-explosion photometry + some assumptions allow us
to find the terminal luminosity of the progenitor and infer
a Mass
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Red supergiant problem...
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EVOLUTION FROM MS TO RSG

- 120M, [ M evnet & Maeder
- B 7 = 0.020
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.MODEL DEPENDENT
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what changed..?

. abundances, opacities, overshooting... |[ 1"

- mass-loss rate implementation e
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MASS-LOSS RATE IMPLEMENTATION

log(L/Lo) in addition, in Ekstrom+ 2012:
if L > S5Lgaa, M = Mx3

| (kicks in at ~20Mo)
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EMPIRICAL MASS-LOSS RELATIONS

- Mass-loss rates are
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EMPIRICAL MASS-LOSS RELATIONS
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Mass loss rates in the Hertzsprung-Russell diagram

C. de Jager (*'?), H. Nieuwenhuijzen (*'?) and K. A. van der Hucht (V)

(*) Laboratory for Space Research, Beneluxlaan 21, 3527 HS Utrecht, The Netherlands
(*) Astronomical Institute, University of Utrecht, Utrecht, The Netherlands

Received January 19, accepted June 19, 1987 Needs a bl't Of an update L

Summary. — From the literature we collected values for the rate of mass loss for 271 stars, nearly all of population I, and
of spectral types O through M. Rates of stellar mass loss determined according to six different methods were compared

* High|y heterogeneous U : from ull.travioleft.lspectra, mainly from far UV reso-
nance line profiles ;

Sample (masses’ V : from spectral lines in the visual and near ultraviolet
metallicities...) spectral ranges, mainly subordinate lines such as
H,, but in some cases also from other lines,

* Highly heterogeneous including the H and K lines ;
) . I : from broad-band infrared photometric data, as-
methodologles (mid-IR suming the flux to be due to free-free emission ;

: from infrared data on C-molecular compounds ;

: from maser lines in the microwave range ;

: from radio continuum data : radiofluxes due to
free-free emission, i.e. excluding data of stars for

% No longer used for OBA which the radio emission is assumed to be synchrot-

ron radiation (cf. e.g. Underhill, 1984a).

excesses, abs line analysis,
radio...)

~kde
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REAPPRAISAL OF RSG MASS-LOSS

- By targeting RSGs
In clusters, we can
assume all RSGs
are the same Z and
same Mini

. _Nec2100
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evolution
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SOFIA - new data (PI N Smith) WISE - archival

MSX - archival

SPITZER - archival
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HOW DO WE MEASURE MASS-LOSS

RATES?

Dust layer

20

© Dust layer absorbs and

re-emi

ts photons

- Mass-loss can be
measured by modeling

mid-1H
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HOW DO WE MEASURE MASS-LOSS
RATES?

The shape of this bump tells us
about the dust composition, for
RSGs it’s silicate rich dust

/’\

Light albsorbed by
dust here

Flux

Re-emitted here

Wavelength
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HOW DO WE MEASURE MASS-LOSS
RATES?
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We model this emission
using a radiative transfer
code (DUSTY), and derive
a mass-loss rate for each
RSG in the cluster

Oq% < MIDOSH I ROTOTETY:
1 E | X Observed Photometry /
C | X De-reddened JHK photometfy
-14 I .
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NGC2100

- Tight correlation...
- Fixed initial mass
and Z

Mass loss rate (M./yr)
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HOW DO MASS-LOSS RATES CHANGE
WITH INITIAL MASS?

- Repeat for clusters
of different ages
and hence RSGs

BRI ES e Of different initial
. SN N M aSSES..




A MASS-DEPENDENT MASS-LOSS

RATE PRESCRIPTION
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A MASS-DEPENDENT MASS-LOSS

RATE PRESCRIPTION
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COMPARISON TO OTHER

Residuals [ log(Mdot/Msun)

PRESCRIPTIONS
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- Lower scatter
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- Scatter slightly higher

- Avg offset = 0.13

- BUT much worse for
higher luminosity stars...



COMPARISON TO EVOLUTIONARY
MODELS

5 T T T T T ] Solid line -

! ] current
implementation
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What does 1t all mean...

- Observed H-poor SN
fraction ~ 1/3

- Back of the envelope IMF
calculation...

% stars 8-30M¢ ~ 85%
% stars >30My ~ 15%

Core-Collapse SN Fractions
Smith et al. 2011
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What does 1t all mean...

- If mass-loss rates were
higher... could explain this
discrepancy

% stars 8-16M¢y ~ 60%
% stars >160 ~ 40%

Core-Collapse SN Fractions
Smith et al. 2011
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What does 1t all mean...

- But, mass-loss rates are
lower

- Single star evolution
cannot explain the
observed SN rate

~ Strong evidence for most
H-poor SN being the
products of binary
interaction

Core-Collapse SN Fractions
Smith et al. 2011
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CONCLUSIONS: Part 1

There is no observationally motivated reason to increase mass-loss by
factors of 3 or more In stellar evolution models

RSGs that evolve as single stars do not shed their envelope via quiescent
mass loss

Single stars between 20-30M do not lose enough mass to evolve blueward

The relative number of stripped/unstripped SN events predicted by single
star models is way off

Something else (binaries??) is removing the envelope
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HOW WELL DO WE KNOW CLUSTER

 NGC 2100




USING THE CMD

© For old and intermediate
age clusters (>50Myr),
many observational o 19

effects can’t be explain by © 44
SSP...

- e.g. blue stragglers Y

18

19
0.0
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CMD of NGC 7419
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METHOD 1: brightest TO star
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METHOD 2: luminosity function of
the TO
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METHOD 3: lowest luminosity RSG

e Z = 0.020

IM,, Meynet & Mééder-zqﬁb

4.5 4 3.5
198 Teg




Results...

NGC 7419 - non-rotating

Brightest TO star
Luminosity function
lowest Lbol RSG
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Big disagreement
in ages between
the methods

This is seen for all
clusters in our
sample



What’s going on..?
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12 [

14 [~
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Rotation can’t explain the offset... v/vcrit =0.95 is

really really fast

-1.0

Mergers??? gy -
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Testing with synthetic clusters...
- single stars

22 TO method X |7
i RSG method X | -

s Single stars only. TO

E method

% underestimates the age
© .

O by quite a lot

O

<C

0 1x10* 2x10* 3x10°  4x10°  5x10
Cluster Mass (M)
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Testing with synthetic clusters...
- binary fraction of 50%

N(RSG)
10 20 30 40 50
22 TO method ¥ [
. - T RSG method ¥ | -
s = .o % 3 - - . . o
S 20 _—-mg L - Binary fraction of 50%.
R T e s T T
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CASE STUDY: Westerlund 1
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Beasor et al. (submitted)

Supposedly a very young Galactic cluster (~4Myr), and massive (105 Msun).
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CASE STUDY: Westerlund 1

| ' |
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First time we've been able to attempt a bolometric luminosity for these RSGs...
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CASE STUDY: Westerlund 1
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CONCLUSIONS: Part 2

Using the cluster turn-off to estimate age will cause ages to be
underestimated

Using red supergiants allows a binary independent age to be determined

There could be lots of mergers/mass transfer systems in young clusters

Westerlund 1 probably isn’t as young as people first thought
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