

Atomic gas in Protostellar outflows

Thomas Sperling

Thüringer Landessternwarte

Collaborators: J. Eislöffel, B. Nisini, T. Giannini, C. Fischer, A. Krabbe

A mysterious object in Orion

zoom in

Herbig 1951 Haro 1952

Herbig-Haro objects

• powered by an **outflow** from a **forming star**

Schwartz 1975,1978

- detected in various emission lines
 - \sim optical: [SII], [NII], [OI], H α
 - \sim near-IR: [FeII], H₂
 - ✓ sub-mm/mm: CO, SiO

Frank+2014
Bally 2016
Lee 2020

Ray & Ferreira 2020

shock-excited

Schwartz 1977 Hartigan+1995

Examples:

Three challenges

M

E

Accretion/ejection mechanism?

• efficiency:

$$f = \frac{\dot{M}_{\text{out}}}{\dot{M}_{\text{acc}}}$$

• X-wind vs. disk wind

Shu+2000 Ferreira+1997

Outflow evolution?

• Class 0:

mainly molecular

• Class I:

?

• Class II:

mainly atomic/ionic

Ellerbroek+2013, Watson+2016

Importance of FIR [OI]?

$$\left\{ \begin{bmatrix} O I \end{bmatrix}_{63\mu m} \\ [O I]_{145\mu m} \right\}$$

Nisini+2015

Optical spectrum of HH111

The OI line ratio is density sensitive

[OI]63µm is not observable from the ground!

Mostly Class 0 outflows have been mapped in [OI]!

Nisini+2015, Dionatos+2018, Dionatos & Güdel 2017

It became clear, that...

- bulk [OI] emission → shocks
- [OI] traces warm, atomic gas

Hollenbach & McKee 1989

Watson+2016

Alonso-Martinez+2017

What about more evolved **Class I** sources?

PACS' twin instrument aboard SOFIA

Stratospheric Observatory For Infrared Astronomy

Telescope -

► Instrument

Field Imaging Far-Infrared Line Spectrometer

5x5 Integral Field Unit

• Effective aperture: 2.5m

 $51 - 200 \, \mu m$ R = 600 - 2,000

Wavelength Range

Resolving Power R = $\lambda/\Delta\lambda$

Field of View **Features**

30" x 30" (Blue) 60" x 60" (Red) 2x(16x25) Ge:Ga

Young+2012, Krabbe+2013

ground

Mitigating the Earth atmosphere

(1) Gaussian emission line

$$\varphi(\lambda; \boldsymbol{b}) = \frac{A}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{\lambda - \mu}{\sigma}\right)^2\right] + B$$

(2) Passage through atmosphere

$$\varphi(\lambda; \boldsymbol{b}) \cdot \tau(\lambda; \boldsymbol{a})$$

(3) Telescope + instrument

$$y(\lambda_k; \boldsymbol{a}, \boldsymbol{b}, R) = S\left(\left[\varphi(\lambda; \boldsymbol{b}) \cdot \tau(\lambda; \boldsymbol{a})\right] * SIF(\lambda; R)\right)$$

Atmospheric transmission

RESULTS

First [OI] mappings of...

First [OI] mappings of...

Sperling+2020, 2021

The spectacular HH111 jet

Mass-loss rates

Shock model (HM89)

Hollenbach 1985, Hollenbach & McKee 1989

b)
$$\left(\frac{\dot{M}_{\text{out}}}{M_{\odot} \text{ yr}^{-1}}\right) = 10^{-4} \cdot \left(\frac{L([O I]_{63})}{L_{\odot}}\right)$$

In a nutshell...

- single dissociative wind shock of jump (J) type
- parameter range

$$v_{\rm s} = 30 - 150 \,\mathrm{km} \,\mathrm{s}^{-1}$$

 $n = 10^3 - 10^6 \,\mathrm{cm}^{-3}$

predictions

a) $[OI]_{63\mu m}$ is the dominant cooling line

Is the HM89 model applicable?

- multiple unresolved shocks
 - Dougados+2010, Nisini+2015
- other emission lines?
 - e.g. [OI]145, [CII]157, [SI]25, [SiII]35, [FeII]26

Issues

- 1. Agreement of specific line ratios with HM89 predictions?
- 2. J-shock vs. C-shock?
- 3. [OI]63µm dominant cooling line?
- 4. Contamination by a Photodissociation region (PDR) or a disk?
- 5. A 30yr old model (new collisional coefficients, chemical networks...?)

Mass-loss rates – an alternative approach

Sperling+2020

Why the range of 3.3-6.7?

- fluid dynamics
- counting contributing atoms
- solving rate equations of OI

 $D \dots$ distance to the target

 θ ... projected distance

 v_t ... component of the velocity on the plane of sky $L([OI]_{63})$... $[OI]63\mu m$ luminosity

A critical assumption:

• n_{coll} is close to the critical density

The outflow components I

Target	Region	Class	$\dot{M}_{\rm out}({ m [OI]})$	$\dot{M}_{ m out}$ & component	$\operatorname{dominant}$
			$10^{-7} M_{\odot} \mathrm{yr}^{-1}$	$10^{-7} M_{\odot} \mathrm{yr}^{-1}$	component
HH1	VLA 1	0	≤ 25.9 – 52.6	~ 6 in [Fe II]	
	knot A		≤ 9.5 − 19.4	~ 4 in [S II]	
				~ 0.1 in H_2	
HH212	knot A and B	0	3.9 – 7.9	~ 10 in CO, SO, SiO	
				≤ 3 in CO, SiO	
				$\sim 1 \text{ in H}_2$	
Cep E	knot A	0	≤ 22.4 – 45.5	~ 200 in CO	
	jet		≤ 7.2 – 14.7		
L1551	IRS 5	I	5.8 - 11.8	~ 8.6 in HI	
				~ 1.7 in [Fe II]	
				~ 0.4 in H_2	

Sperling+2020

The outflow components II

Target	Region	Class	$\dot{M}_{\rm out}({\rm [OI]})$	$\dot{M}_{ m out}$ & component	$\operatorname{dominant}$
			$10^{-7}M_{\odot}{ m yr}^{-1}$	$10^{-7} M_{\odot} \mathrm{yr}^{-1}$	component
HH111	HH111IRS	I	26 – 53	4 in CO	
	jet (knots F-O)		6 – 12	2 – 6 in [O I]λ6300	
SVS13	SVS13A	I	25 – 51	30 in HI	
	HH8-11		_	8.9 in[Fe II]	
	НН7		_	7.0 in H ₂	
НН34	HH34IRS	I	11 – 23	0.7 in [Fe II]	
				0.03 in H ₂	
				~ 1.5 in[O I]λ6300	
HH26	НН26А	I	_	0.2 - 0.5 in H ₂	

Compilation Sperling+20

Other fully mapped outflows

3.	Target	Class	$\dot{M}_{\rm out}({ m [O\ I]})$	$\dot{M}_{ m out}$ & component	$\mathbf{dominant}_{\mathbf{l}}$
Nisini+2015 Dionatos & Güdel 2017 Dionatos+2018			$10^{-7} M_{\odot} \mathrm{yr}^{-1}$	$10^{-7} M_{\odot} \mathrm{yr}^{-1}$	component
	L1448	0	1 – 2	> 100 in CO	
	IRAS4A	0	0.3 – 1.0	> 70 in CO	
	НН46	I	7 – 15	15 – 28 in CO	
$\begin{array}{c} {\rm Podio}{+2020} \\ {\rm Lee} \ 2020 \end{array}$	BHR 71	0	1 – 3	> 180 in CO	
	VLA 1623	0	0.5 – 1	16 – 160 in CO	
	HH211	0	2.4 – 4.8	7 – 28 in SiO, CO, SO	
				$\sim 20-28$ in H_2	
	IRAS 2A	0	0.3 - 0.7	6 in H ₂	
				> 600 in CO	

RESULTS

Sperling+2021

Outflow efficiencies

• most outflows:

$$f \sim 0.01-0.5$$

→ agreement with

X-wind & disk wind

• many Class 0 outflows $f \lesssim 0.05$

→ take into account the molecular component!

Compilation Sperling+20

Comparing with unresolved outflows

- WISH+DIGIT+WILL+GASPS surveys
 - → single Herschel/PACS footprint
 - → only outflows
 - → 28 Class 0, 23 Class I, 21 Class II

Mottram+2017, Alonso-Martinez+2017

Consistent with my findings!

Evolutionary trend apparent!

Main conclusions

- my SOFIA observations support the notion that protostellar outflows undergo an evolution
- the bulk mass-loss from Class 0 outflows resides by tendency in a molecular component
- for more evolved **Class I** outflows the **[OI] emission** line tends to trace the **main component**

...but we need more data!

And what about JWST?

Credit: NASA

- launch: November 2021?
- D ~ 6.5 m
- $\lambda = 0.6 \, \mu \text{m} 28 \, \mu \text{m}$

mid-IR lines

[FeII], [SI], [SiII]...

no observations at FIR [OI] lines

The End