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Motivation

NS

/\ SFB 956

* First detection of the [CII] fine-structure emission line
(Russell et. al. 1980):

“Optical depth effects in the 157 um line may be
significant but have not been take into account in
our calculation because our data is still too
restricted”
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[*ClI] hyper-fine structure line

K  C* has only two fine structure levels in the ground state with
an energy difference of 91.25 K. The ionization potential of
carbonis 11.2 eV.

 Emission is produced by collisional excitation followed by
radiative decay at 1.9 THz.

/\ SFB 956

-  The hyper-fine structure of the *C* isotope due to the extra
o neutron, it is splitted into three hfs-components.
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[©CII] hyper-fine structure line
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[12Cll] and [**ClI] spectral signature
Line Statistical Weight Frequency Vel. offset Relative
Su 81 v dvpop  intensity
(GHz) (km/s) SF_F
[2CII] 2P3/2—2P1/2 4 2 1900.5369 0 —
[BCII] F=2—1 5 3 1900.4661 +11.2 0.625
[13CII] F=1—0 3 1 1900.9500 -65.2 0.250
[13CII] F=1—1 3 3 1900.1360 +63.2 0.125




Description of the Sources

‘\ M43

/\ SFB 956

e M43 is a close-by ideal spherical
nebula with a single exciting star in
the center, an early B type star.

e It iIs located northeast of the Orion
nebula with a distance of 389 pc.

 Due to its close distance, its simple
spherical geometry and a single
ionization source, M43 is well suited
as a simple, properly characterized
test case.

[CII] Optical Depth and Self-Absorption in Galactic Sources

M43 Visible + IR composite image

o Credit: ESA/Hubble NASA
Cristian Guevara,
Ph1, Uni zu KdIn
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Description of the Sources

k Horsehead PDR
[\ SFB 956

« Horsehead PDR is a dark cloud
filament protruding out of the Orion
Molecular Complex.

 The region is located at a distance of
360 pc.

« It has an edge-on geometry
illuminated by two OB systems with
a moderate far-UV intensity of 100.

Horsehead IR image

Credit: ESO
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Description of the Sources

\ Monoceros R2
[\ SFB 956

« Monoceros R2 (MonR2) is an ultra

compact HIl region located at 830 pc. RIS,
. The region contains a reflection ¢ i
nebula and the UCHII is surrounded st

by several PDRs.

e |IRS1 is the main ionization source
with high UV field > 10°.

Monoceros R2 IR image

Credit: VISTA/ESO
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Description of the Sources

\ M17

/\ SFB 956

—16°00'00"

It is considered one of the brightest
and most massive star forming
regions in the Galaxy, located at 1. 9
kpc of distance.

—16°05'00"

 The cloud is illuminated by a cluster
(>100) of OB stars.

—16°10'00"

e« M17SW presents an edge-on
geometry, very well suited for
studying the PDR structure.

—16°15'00"

18"20M40° 20M20° 20M00°

[CII] Optical Depth and Self-Absorption in Galactic Sources

M17 8 um Spitzer map and [CI] °P -
*P, NANTEN2/SMART integrated

Cristian Guevara, intensity map in contours
Ph1, Uni zu Kdln

Aug 5th 2020 9
Page 9



.+ Observations
LxgigsmngOg  Observations were done using the SOFIA/JupGREAT 7x2 pixels
- array receiver between 2015 and 2017.

 The array was centered around the [CIl] peak.

 Deep integration (30-80 min) with high S/N ~ 300 for [**CIlI] and
~ 7 for [*CIl] F=1-0 with a rms of 0.1-0.3 K.

®
a”

200 400 600 800 1000

M17SW [CIl] integrated
intensity map  (Pérez-
Beaupuits et al. 2012) with
the 7 upGREAT pixels

[CII] Optical Depth and Self-Absorption in Galactic Sources

Cristian Guevara, ) ! :
Ph1, Uni zu Kdln 100 0 -100 -200
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Observations

[AsFB956 ¢ Observations were done using the SOFIAlupGREAT 7x2 pixels
array receiver between 2015 and 2017.
 The array was centered around the [CIl] peak.

 Deep integration (30-80 min) with high S/N ~ 300 for [**CIlI] and
~ 7 for [*CIl] F=1-0 with a rms of 0.1-0.3 K.

Horsehead PDR  [CII]
integrated intensity map
with the 7 upGREAT pixels
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Zeroth Order Analysis

[\sFB956 ¢ As a first approximation, it was assumed that the source has a
single homogeneous layer with the same excitation

temperature (T_) for both isotopes.

o [13CIl] was scaled up assuming the elemental abundance ratio
12CJ13C for the different sources.

[cn]

M17SW [CII] observations

[CII] Optical Depth and Self-Absorption in Galactic Sources
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Cristian Guevara, =50 O 50 100-50 O 50 100
Ph1, Uni zu K6In Velocity (km/s) Velocity (km/s)
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Zeroth Order Analysis

[3CIl] overshoots the [*?Cll] emission at the line center and
matches at the line wings for M43 and Horsehead PDR.
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Zeroth Order Analysis

AsrB9s6 ¢ The [CII] optical depth was estimated from the [12CII] and [**CII]

tic Sources

[ci]
[13CI]x67

[cil/T13¢i]

line.

Tmb,lZ(”) 1 - e_T(UD} @

Tmb,lS,mr(U) T(UIZ)

The emission is optically thick in the line center with a T
between 1 and 2 for M42 and HOR PDR.
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Zeroth Order Analysis

AsFB9se  [CIl] overshoots the [*2Cll] emission at the line center and
matches at the line wings for MonR2 and M17SW.

« [*CII] line profiles shows absorption dips not present in [**ClI]
for MonR2 and M17SW.
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Zeroth Order Analysis

AsrB9s6 ¢ The [CII] optical depth was estimated from the [12CII] and [**CII]

line. Tanb.12(0) | — -T2 ot
Tmb,l3,mr(U) T(UIZ)
2 « The emission is optically thick in the line center with a T
2 between 4 and 8 for MONR2 and M17SW
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Zeroth Order Analysis

 We also estimated the column density directly from the
integrated intensity for [12CII] and the scaled-up [13CII] by the
elemental abundance ratio.

[**CII) Optically thin [*“CII] Ratio
Positions | [**CIIJInt.  Nuyuw([*CH])  Nuin((CH])?* Ay min” | [PCH] Int. N ([CH])S Ay min %ﬁ
Intensity ("chn]  [“CH] | Intensity  [2CO]  [2CH] | oo
(Kkm/s)  (cm™?) (m?) (mag)| Kkm/s) (m?) (mag)| / \
M43 0 55 2.5E16 1.7E18 74 283.1 1.3E18 5.6 1.3
M43 1 43 1.9E16 1.3E18 o7 2492 1.1E18 49 1.2
M43 2 26 1.2E16 7.7E17 34 172.2 7.7E17 34 1.0
M43 3 2.6 1.1E16 7.6E17 34 134.0 6.0E17 2.6 13
M43 4 55 2.5E16 1.7E18 74 270.1 1.2E18 53 14
M43 5 3.7 1.6E16 1.1E18 49 227 4 1.0E18 4.5 1.1
M43 6 41 1.8E16 1.2E18 54 237.9 1.1E18 4.7 1.1
HOR 0 12 5.3E15 3.6E17 1.6 39.6 1.8E17 0.8 2.0
HOR 1 0.7 3.1E15 2.1E17 0.9 112 5.0E16 0.2 42
HOR 2 14 6.1E15 4.1E17 1.8 26.6 1.2E17 0.5 3.4
HOR 3 1.0 4.7E15 3.1E17 14 25.7 1.1E17 0.5 2.7
HOR 4 0.3 1.2E15 84E17 04 14.8 6.6E16 0.3 1.3
HOR 5 09 3.9E15 2.6E17 12 14.7 6.5E16 0.3 4.0
HOR 6 16 7.0E15 4.7E17 21 415 1.9E17 0.8 25
MonR2 1 12.2 5.5E16 3.7E18 16.3 410.8 1.8E18 8.1 20
MonR2 2 114 5.1E16 34E18 15.2 477.0 2.1E18 9.5 1.6
M17SW 0 41.6 1.9E17 74E18 33.0 657.2 2.9E18 13.1 2.9
M17SW 1 39.1 1.7E17 7.0E18 31.1 460.1 2.1E18 9.1 34
M175W 2 26.9 1.2E17 4 8E18 21.3 458.1 2.0E18 9.1 23
M175SW 3 16.5 7.4E16 2.9E18 13.1 4899 2.2E18 9.7 1.3
M17SW 4 451 2.0E17 8.1E18 359 1227 3.2E18 14.4 25
M175W 5 14.1 6.3E16 2.5E18 11.2 521.7 2.3E18 104 1:1
M175W 6 34.3 1.5E17 6.1E18 27:3 617.7 2.8E18 12.3 2.2

? [*2CI] column density derived from the scaled-up ['*CII] column density.
b ['2Cll] equivalent visual extinction derived from the scaled-up ['*CII] column density.
¢ [*2CI] column density derived directly from the ['*Cl1] integrated intensity assuming optically thin regime.

4 [2CI1] equivalent visual extinction derived directly from the ['*ClI] integrated intensity assuming optically thin regime.

17



Multi-component Analysis

k  The [*2CII] spectra with complex velocity structure and
/srposg  absorption dips shows that the single layer assumption is
iInsufficient.

 The objective is to explain the [1“Cll] and [**CII] line profile by a
composition of multiple Gaussians components.

« The model contains 2 layers, a background emission layer and
a foreground absorption layer.

Background

Foreground

[CII] Optical Depth and Self-Absorption in Galactic Sources

Credit: NASA/Jim Ross

Cristian _Guevarah Credit: getdrawings.com, pngtree.com, iconsplace.com
Ph1, Uni zu KoéIn

Aug 5th 2020 18
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Multi-component Analysis

A sr956 » The plan is to use the radiative transfer equation to derive:

- The excitation temperature (T_)
- [22ClI] column density (N, (CII))

Tan(v) = | Y FolTexzy) (1 — &™)

[CII] Optical Depth and Self-Absorption in Galactic Sources

Cristian Guevara,
Ph1, Uni zu KdIn

Aug 5th 2020
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E

- The velocity center (v, )
- The FWHM velocity width (Av ).
3 _ T/ Tex,i
gu C (1 € . )
(v) = P, A N (CIT

- Eif Tig (v) L.

19



Multi-component Analysis

NS

[\ SFB 956
 Three basic assumptions were done:

» T_ is the same for [**Cll] and [**CII].

+ [®CII] is optically thin.

+ If [**ClI] does not have a visible [**CIl] counterpart above
noise level, [*2Cll] emission is not affected by self-
absorption effects.

[CII] Optical Depth and Self-Absorption in Galactic Sources

Cristian Guevara,
Ph1, Uni zu KdIn

Aug 5th 2020
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Model
Data

[CII] Optical Depth and Self-Absorption in Galactic Sources
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Multi-component Analysis

- Fitting process: 1% the [**CII] emission is fitted, fixing T ..
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Foreground T

Multi-component Analysis

* Fitting process: 2" the remaining [*2CIl] emission is fitted,
fixing T ..

T LKI

ot T = 80
[cT]
Model se- 10 F=2-1 F=1-1 | | — 80
DEIE] ~ 25.0% o 5% 16.6% i Background | |-
Background = * 1
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g |IIIIIIIII|IIIIIIIII 1

a0
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Multi-component Analysis

‘\ * Fitting process: 3" as the fitted line profile overshoots the
/i<reosg  Observed one, the foreground absorption features are fitted
with a fixed lower T_.

4G_I T I T T T T

e —

Model 1L -

Background

Data
Background
Foreground t

Xl

Tmb LX]

Tmh K]

0 10 20 a0 40
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[CII] Optical Depth and Self-Absorption in Galactic Sources

MONRZ2 position 1

Cristian Guevara,
Ph1, Uni zu KdIn
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Multi-component Analysis

NS

AsFB9s6e © For M43 and Horsehead PDR, due to the absence of
absorption features, the background temperature was fitted,
witha T_ of 100 K (M43) and 30 K (HOR).
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Multi-component Analysis

AsrB9s6 » The total [*2Cll] column density for the different positions

[CII] Optical Depth and Self-Absorption in Galactic Sources

Cristian Guevara,
Ph1, Uni zu KdIn

Aug 5th 2020
Page 25

varied between 1x10*® and 4x10*® cm? for M43 and 3.6x10"
and 1.3x10'® cm2 for HOR, with an Av between 4.9 and 18.3
mag for M43 and 1.6 to 5.8 mag for HOR.
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Multi-component Analysis
k « For MONR2 and M17SW, sources that present absorption dips:

AsrB9s6  The background is composed by high temperature broad
emission components with extremely high column density.

 The foreground is composed by low temperature narrow
absorption notches with high column density.
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[CII] Optical Depth and Self-Absorption in Galactic Sources
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Multi-component Analysis
« MONR?2 fitted parameters
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Column Density
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extinction (Av)
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Multi-component Analysis

« :

/\ SFB 956

Column Density (N(CII))
Equivalent visual extinction 12 - 41 mag

(Av)

Model

Data
Background
Foreground t

[CII] Optical Depth and Self-Absorption in Galactic Sources
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M17SW fitted parameters
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Multi-component Analysis

« An alternative scenario was also studied, a multi-
component single emission layered model.

 The result shows two kinds of components.

- Cold high density gas with a flat-top [2CIl] profile due to
extremely high optical depth that contributes to the [**CII].

- Warmer, lower density gas with narrow ['2CIl] profiles
tracing the velocity peaks of the [*2Cll]] emission with
negectable emission in [2CIl].

e This scenario was d

B0 =7 T T T

Iscarded as physically improbably.
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[12CII]/[CII] Abundance Ratio

\  The analysis highly depends on the assumed ratio, it could be
possible to derive the ratio directly from the wing emission

/\ SFB 956

with high SIN.

 For M17SW, six of the seven positions were averaged to

analyze the ratio.
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[NII] Observations

\  We estimate the [NII] column density under some basic

/\ SFB 956
and an electron density of 100 cm-3)

e The derived column density represepts a lower limit.
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Page 31



Origin of the Gas

(o

/\ SFB 956

High column densities are hard to explain in the standard
scenario, high column densities would require several layers
of C* stacked on top of each other.

For the foreground, it is required low temperature ionized

[ ]
carbon gas, but it is not diffuse gas (n~103cm3). There are
variations In the line profiles between the positions.
< 2 T rrprrrrprrrrp oo " SELELELE LR R | DL AL =
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Summary

NS

/\ SFB 956

 The observations and analysis confirm the long standing
suspicion, already proved for the single case of Orion-B (Graf
et al 2012). that the [**CIl] emission is heavily affected by self-
absorption effects and high optical depth.

 The absorbing dips change the profile of the [CII] line,
mimicking separate velocity components.
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Summary

NS

/\ SFB 956

 The high column densities of the warmer background are
difficult to explain in the present PDR-model context and ISM

phases.

- The large A derived here can be interpreted as several layers

of C* stacked on top of the other. This situation could be
enhanced by fractal and clumply material.

 For the foreground, the nature of the material is much more
puzzling. The [CII] is ionized, cold lower density material. It is
not diffuse gas.
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Future Work

\ [13CII] in colors vs [12CII] in contours

/\ SFB 956 16°10'00.0"

Integrated Intensity (K km/s)
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Future Work

NS

/\ SFB 956
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Future Work

k Feedback Legacy Project
[\ SFB 956

 Feedback is a SOFIA legacy project using the upGREA
heterodyne receiver to map the [CII] 158 um line in Galactic

Molecular clouds.
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Future Work

k « Analysis of the average optical depth per regions of RCW120
from the Feedback Legacy Project (Kabanovic et al. in prep)

[\ SFB 956
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Future Work

AsrB9s6 ¢ [Ol] 63 um also is affected by self-absorption effects, following
the same [*2Cll] absorption dips

* [OI] 145 um seems to be optically thin with a profile similar to

13 | —
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Future Work

NS

[\ SFB 956
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Future Work
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/\ SFB 956
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C

/\ SFB 956
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Thank you for your attention

Paper: [C Il] 158 um self-absorption and optical depth effects

https://ui.adsabs.harvard.edu/abs/2020A%26A...636A..16G/abstra
Ct

42


https://ui.adsabs.harvard.edu/abs/2020A%26A...636A..16G/abstract
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