

Understanding the multi-phase structure and physical conditions of the ISM A dominant reservoir of CO-dark

Emmy

UNIVERSITÄT HEIDELBERG

ZUKUNFT SEIT 1386 Noether-

PFG Deutsch

Programm

molecular gas in 30 Doradus

Mélanie Chevance

Heidelberg University

SOFIA tele-talk – 16 September 2020

Collaborators: Suzanne Madden Christian Fisher William Vacca Vianney Lebouteiller Nick Abel Dario Fadda Frederic Galliano Norbert Geis Christof Iserlohe Alfred Krabbe Diederik Kruijssen Albrecht Poglitsch Fiorella Polles Hans Zinnecker

Galaxy formation in a cosmological context

Star formation and feedback in galaxy simulations

Uncertainties on the physics of star formation and feedback

Different criteria for star-forming gas

Gas surface density: blue - red - yellow

Different feedback prescriptions

Multi-wavelength observations,

In a variety of environments,

> At high spatial resolution

Multi-wavelength observations, _____ [OI], [CII], [OIII], [NIII]

In a variety of environments,

> At high spatial resolution

Multi-wavelength observations, _____ [OI], [CII], [OIII], [NIII]

In a variety of environments,

 Range of metallicities, densities, SF activity

> At high spatial resolution

Multi-wavelength observations, _____ [OI], [CII], [OIII], [NIII]

In a variety of environments, _____ Range o

Range of metallicities, densities, SF activity

At high spatial resolution
Nearby galaxies

Diagnostic of various phases in the ISM

Diagnostic of various phases in the ISM

Kennicutt et al. 2011

Diagnostic of various phases in the ISM

Kennicutt et al. 2011

Structure of the ISM

Madden et al. 2020

Structure of the ISM

Low metallicity nearby galaxies

LMC 30 Dor	IC10	NGC1569
$Z = 1/2 Z_{\odot}$	$Z = 1/3 Z_{\odot}$	$Z = 1/4 Z_{\odot}$
D = 50 kpc	D = 700 kpc	D = 3.36 Mpc

SOFIA/FIFI-LS data: 30Dor

Chevance et al. 2020b

Spitzer, Herschel & SOFIA data: IC10

SOFIA/FIFI-LS data: NGC 1569

FIFI-LS [OIII] 52µm (smoothed)

PACS [OIII] 88µm Contours: [OIII] 52µm

Maps: C. Fisher

Empirical diagnostics: *Electron density in the ionised gas*

Mélanie Chevance

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Empirical diagnostics: *Electron density in the ionised gas*

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Empirical diagnostics: *Electron density in the ionised gas*

The ISM becomes more porous towards lower metallicities

The Meudon PDR code (Le Petit et al. 2006,Le Bourlot et al. 2014, Bron et al. 2014)

Model characteristics:

- Parallel slab geometry
- Gas phase abundances measured in 30Dor (Pellegrini+2011)
- Constant pressure

The Meudon PDR code (Le Petit et al. 2006,

Le Bourlot et al. 2014, Bron et al. 2014)

Model characteristics:

- Parallel slab geometry
- Gas phase abundances measured in 30Dor (Pellegrini+2011)

- Constant pressure

Key parameters:

- G_{UV} : intensity of the *incident* radiation field
- P: pressure of the cloud
- A_{v,total}: visual extinction

Chevance et al. 2016 Chevance et al. 2020b

Physical distance between stars and clouds: a 3D view of 30Dor

Chevance et al. 2016 Chevance et al. 2020b

Physical distance between stars and clouds: a 3D view of 30Dor

Chevance et al. 2016 Chevance et al. 2020b

Total H₂ mass predicted by the PDR model

Chevance et al. 2020b

Chevance et al. 2020b

Total H₂ mass predicted by the PDR model

More than 75% of the molecular gas not traced by CO

Chevance et al. 2020b

Chevance et al. 2020b

Environmental variations of the CO-dark gas mass

> The **fraction of CO-dark gas is smaller closer** to R136 (at high radiation field)

Environmental variations of the CO-dark gas mass

The fraction of CO-dark gas is smaller closer to R136 (at high radiation field)
 Due to the fact that clouds close to R136 (high radiation field) have higher A_v

Environmental variations of the CO-dark gas mass

- > The **fraction of CO-dark gas is smaller closer** to R136 (at high radiation field)
- > Due to the fact that **clouds close to R136** (high radiation field) have higher A_v
- \succ At higher A_v, the CO-free molecular envelope represents a smaller fraction of the total cloud mass

Model predictions show that:

[CI] and [CII] are good tracer of the molecular gas at low metallicity

> [CII] is a better tracer due to its higher luminosity

Madden et al. (2020)

Model predictions show that:

[CI] and [CII] are good tracer of the molecular gas at low metallicity

> [CII] is a better tracer due to its higher luminosity

Madden et al. (2020) used a photoionisation model to **determine systematically the CO-dark molecular gas mass from [CII]** observations:

>
$$M(H_2)_{total} = 10^{2.12} \times [L_{[C II]}]^{0.97}$$

> $\alpha_{CO} = 10^{0.58} \times [Z/Z_{\odot}]^{-3.39}$

Madden et al. (2020)

Star formation relation

Low-metallicity galaxies back on the standard star-formation relation

Low-metallicity galaxies back on the standard star-formation relation

Steep slope of the CO-to-H₂ conversion factor with metallicity

Based on the elemental abundances only, we expect CO abundance to scale ~ linearly with metallicity

Based on the elemental abundances only, we expect CO abundance to scale ~ linearly with metallicity

> The observed slope of α_{co} with Z is -3.39, much steeper than -1

> How can we explain this?

> This can potentially be explained by an environmental dependent radiation field dissociating CO (H_2 self-shielded)

> This can potentially be explained by an environmental dependent radiation field dissociating CO (H_2 self-shielded)

> Can the UV photons emitted by young star-forming regions be responsible?

> This can potentially be explained by an environmental dependent radiation field dissociating CO (H_2 self-shielded)

> Can the UV photons emitted by young star-forming regions be responsible?

> How many photons escape during a star-forming region lifetime?

Evolutionary cycle between clouds, feedback phase and young stellar regions

Solution We have linked the spatial decorrelation between **CO and H** α to their **emission timescale** *Kruijssen et al. (2018), Hygate et al. (2019), Haydon et al. (2020b)*

The observed "feedback timescale" exceeds the predicted timescale

The observed "feedback timescale" exceeds the predicted timescale

Offset reflects the coupling efficiency between feedback and the surrounding ISM

Coupling efficiency as a function of metallicity

Coupling efficiency as a function of metallicity

Photoionisation as a source of feedback couples more efficiently with the ISM at high metallicity -> more photons escape at lower metallicity

The low CO/SFR and high [C II]/CO observed in low metallicity dwarf galaxies can be explained by the photodissociation of CO Madden et al. (2020)

- The low CO/SFR and high [C II]/CO observed in low metallicity dwarf galaxies can be explained by the photodissociation of CO Madden et al. (2020)
- The UV photons leaking out of young starforming regions could be responsible for this photodissociation of CO

- The low CO/SFR and high [C II]/CO observed in low metallicity dwarf galaxies can be explained by the photodissociation of CO Madden et al. (2020)
- The UV photons leaking out of young starforming regions could be responsible for this photodissociation of CO
- This is increased at low-metallicity due to a more porous ISM Chevance et al. (in prep.)

- The low CO/SFR and high [C II]/CO observed in low metallicity dwarf galaxies can be explained by the photodissociation of CO Madden et al. (2020)
- The UV photons leaking out of young starforming regions could be responsible for this photodissociation of CO
- This is increased at low-metallicity due to a more porous ISM Chevance et al. (in prep.)
- Results in the presence of a large reservoir of CO-dark molecular gas

Conclusions

Using PDR modelling, FIR emission lines reveal the **3D structure** and the **physical properties** of the gas

In massive star forming regions the vast majority of the molecular gas is CO-dark

Conclusions

Using PDR modelling, FIR emission lines reveal the **3D structure** and the **physical properties** of the gas

In massive star forming regions the vast majority of the molecular gas is CO-dark

This is driven by:

> The **intense radiation field** from the central cluster

The high porosity of the gas in moderate to low-metallicity environments, allowing a large fraction of the photons to escape young stellar regions and travel over tens of parsecs

> Next step: bridging cloud-scale conditions to the **larger scale environment**

Future work

LMC+: SOFIA Joint Legacy Proposal proposal with FIFI-LS (C9) on the LMC Molecular Ridge (*P.I.: S. Madden and A. Krabbe*)

50h: 1.3x0.5 deg map in [CII] and [OIII]

- physical conditions and thermal processes in the PDRs
- quantify the total molecular gas mass reservoir
- probe a wide variety of star-forming and ISM conditions
- complement the recent accepted ALMA proposal for CO observations of the ridge (PI: Bolatto)

Conclusions

Using PDR modelling, FIR emission lines reveal the **3D structure** and the **physical properties** of the gas

In massive star forming regions the vast majority of the molecular gas is CO-dark

This is driven by:

> The **intense radiation field** from the central cluster

The high porosity of the gas in moderate to low-metallicity environments, allowing a large fraction of the photons to escape young stellar regions and travel over tens of parsecs

> Next step: bridging cloud-scale conditions to the **larger scale environment**