SOFIA-upGREAT spectroscopic imaging of the 158µm [C II] spectral line of the Galactic center's Sgr B region

Outline

- Overview and introduction
- Structure
 - Intensity
 - Velocity
- C⁺ is from both PDRs and HII regions
- SgrB2(M) and the other cores are invisible in [C II]
- Summary

Joint German-US project to image the Galaxy's Central Molecular Zone in ionized carbon (C⁺)

Herschel-SPIRE far-IR (70 um) image showing energy deposition from young stars in giant molecular clouds (Molinari+2011)

- Our Galactic center is 8 kpc (26,000 ly) away; SOFIA/GREAT sees structure at 0.6 pc (2 ly) resolution in the C⁺ spectral line
- C⁺ traces regions where radiation ionizes carbon atoms and may destroy molecules: a key component of the interstellar medium
- Questions: why do stars form where they do in the CMZ? How does gas flow through the CMZ? How does gas reach the central black hole?
 - A large collaborative project with US, German, and instrument consortium observing time: Güsten & Harris Pls
- A lasting legacy from SOFIA

upGREAT image of [C II] toward SgrB

 67×45 pc field

0.55 pc, 1 km/s resolutions (~12,700 spectra with 200 velocity channels each)

Image from 6 of 18 "tiles" from CMZ mapping project

Data obtained during multiple New Zealand flights

Structure of the SgrB region

Distributions

SOFIA

APEX

Harris+21

C18O J=2-1 13CO J=2-1

VLA Lang+10

APEX

Riquelme+

 13 CO, C 18 O, 160 μ m are all more extended than [C II], 20 cm, 70 μ m

[C II], 20 cm, 70 μ m have similar distributions

 13 CO, C 18 O, 160 μ m emphasize a very bright compact source associated with the SgrB2 star-forming cores

21 μ m is dominated by point sources

 $8 \mu m$ and 20 cm are a mix of extended and point source emission; 8 μ m also shows a lot of emission and absorption from the Galactic plane

Molinari+16

Herschel

Spitzer Stolovoy+06

Herschel

Distributions

SOFIA

VLA Lang+10

APEX

PCA image decomposition

Herschel

Molinari+16

Riquelme+

Spitzer Stolovoy+06

Spectroscopy

Area-averaged spectra from SgrB's [C II] body

Velocity-resolved spectroscopy identifies physically separate components and tracks kinematics

Broad lines, two main components at +50 and +90 km/s

Spectral line mapping

The SgrB data cube contains ~12,700 spectra with 200 velocity channels each

Many different ways to look at the data

Sample spectra

Data from interesting and representative positions

[C II] velocity channel maps

 μ m continuum from Molinari+16

Position-velocity diagram for SgrB

upGREAT velocity-resolved 63 μ m [O I]

Ground-state 63 μ m [O I] is strong at [C II] peaks

 $I[O I]/I[C II] \sim 0.3$

Goicoechea+04 detected [O I] throughout the Sgr B2 region in the large ISO beam, proposed origin in widespread PDRs. Also found $I[O I]/I[C II] \sim 0.3$

FIFI-LS images of Sgr B1 in [O I] and [C II]

Plenty of neutral gas, evidence for widespread PDRs
Simpson+2021

PDR modeling with PDR toolbox

We constrain models with absolute intensities and ratios of upGREAT [C II] and [O I], Herschel 70 μ m FIR intensity

FIR is from 70 μ m, since 160 μ m probes mainly cooler background

Solid lines: unmodified numbers, no convergence (lines don't cross). Dashed line/triangle: 58% of [C II] in HII regions; dashed-dot/circle, 76% in HII region

Low-density PDR, in any case, in agreement with Simpson+21

As usual, [O I] 63 μ m, 145 μ m are problems, and don't converge on a simple model

[C II] is from PDRs and HII regions

- Estimates for columns and masses
 - □ $N(C^{+}) = 1.2 \times 10^{18} \text{ cm}^{-2} \Rightarrow m(C^{+}) = 50 \text{ M}_{\odot}$
 - \square N(H+2H₂) = 3.9×10²¹ cm⁻² \Rightarrow m(H+2H₂) = 1.4 ×10⁴ M_{\odot}
 - $\square \ \mathsf{N}(\mathsf{H}^+) = 1.9 \times 10^{21} \ \mathsf{cm}^{-2} \Rightarrow \mathsf{m}(\mathsf{H}^+) = 5.7 \times 10^3 \ \mathsf{M}_{\odot} \ \frac{(20 \ \mathsf{cm free-free})^{-2}}{\mathsf{from Lang} + 20)}$
 - \square N(H⁺)/N(H) \sim 0.5
- □ PDR modeling implies 58% to 76% of [C II] is from PDRs
- Both are in approximate agreement, both agree with typical values from other galactic nuclei

Sgr B2(M): Nearly invisible in C⁺

Provides a detailed look at the correspondence between compact, high luminosity star formation and [C II] in a galactic nucleus

A local example of the ULIRG "C+ deficit?"

Summary

- SgrB is a major contributor to the entire Galactic center's [C II] luminosity: 12% of total from 6% of area
- □ SgrB is a ~35 pc long structure, continuous in velocity and extent, that encompasses SgrB1, G0.6-0.0, and SgrB2
- \square 160 μ m continuum and CO are more extended than [C II]. This, along with the lack of [C II] self-absorption, indicates that the [C II] is on the near side of a large molecular cloud or clouds

Summary

- \square [C II] and 70 μ m continuum share nearly identical spatial distributions, and 20 cm free-free is similar. All are excellent tracers of young stars
- PDR modeling indicates that about 50-75% of the [C II] flux is from H II regions, in agreement with other modeling in other luminous galactic nuclei
- Emission is from well-mixed PDRs and H II regions across the region, indicating that distributed star formation is common across SgrB

Summary

- SgrB2(M) is in front of the SgrB emission, and despite its high luminosity, is invisible in [C II] except in absorption against its FIR continuum. This is a promising region to study the "C+ deficit" found in luminous galactic nuclei
- Deduced structure

All this and more, including discussion of uncertainties and information related to orbital triggers for star formation in the Sgr B2 cores, in:

SOFIA-upGREAT imaging spectroscopy of the [C II] 158 μm fine structure line of the Sgr B region in the Galactic center

A.I. Harris, R. Güsten, M.A. Requena-Torres, D. Riquelme, M.R. Morris, G.J. Stacey, J. Martìn-Pintado, J. Stutzki, R. Simon, R. Higgins, and C. Risacher, and C. Risacher,

¹Department of Astronomy, University of Maryland, College Park, MD 20742, USA

²Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany

³Department of Physics, Astronomy, and Geosciences, Towson University, Towson, MD 21252, USA

⁴Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA

⁵Department of Astronomy, Cornell University, Ithaca, NY 14853, USA

⁶Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir Km. 4, 28850, Torrejòn de Ardoz, Madrid, Spain

⁷I. Physikalisches Institut der Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

⁸now Institut de Radioastronomie Millimètrique, 300 rue de la Piscine, Domaine Universitaire, 38406 Saint Martin d'Hères, France

https://arxiv.org/pdf/2107.14495.pdf

ApJ, in press