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PILLARS & GLOBULES
IMPACT OF RADIATION & WIND ON MOLECULAR CLOUDS
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IMPACT OF RADIATION & WINDS ON MOLECULAR CLOUDS: OPEN QUESTIONS

® Analytical (Bertoldi 1989) & Numerical models (Lefloch & Lazareff 1994,
Henney 2009) successfully reproduce many observed features

® Triggered star formation ? At what stage of evolution & where (core or
periphery) does the star form?

® Understand the role of radiation, magnetic field, turbulence in the
evolution of such clouds and formation of cores
----> Systematic study of properties of photon dominated gas
----> Use [CII] at 158um, high-J CO, [OI] at 63um




TREASURE CHEST
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® Treasure Chest cluster with the brightest member
CPD -59 2661 (O9V or B1Ve star)

® Size of H Il region much smaller than Stromgren
sphere — extremely young cluster and the region
is still expanding

® Optical emission lines consistent with externally
ionized photoevaporative flow from the surface of

cloud
® Column density peak clearly offset from cluster
® Gas at column density peak colder and warmer
close to cluster
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DUST & GAS IN THE TREASURE CHEST GLOBULE

PDR Tracers

High Density Tracers

Gas & Dust
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VELOCITY DISTRIBUTION OF PDR GAS
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® Bulk of the gas in the head at -14.5 km/s; red-shifted tails

-50 -100

® 1 Car (v=-20 km/s) stellar wind & radiation pressure push the
globule radially away along l.o.s.

e [0I] 63 um clearly shows the dense PDR shell around CPD -59
2661 at v=-13 km/s

® Fastern tail shows more blue-shifted material in [C II] ---->
lower density
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SPECTRAL PROFILES
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> At all (except #1) positions [C IT] & [0 I] lines are
broader than CO lines by 1-1.5 km/s
» [C1I] and [O1] line widths and profiles match
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components at -14 and -12 km/s



POSITION-VELOCITY PLOTS 100
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N(H,) & Mass from *CO(2-1)

/// -

e Kinetic Temperature from optically thick '2CO(2-1) ~ 20-40 K

e N(*CO) ~ (1-76)x10" cm™
o N(H,) = 8.5x10% to 4.9x10* cm™

e Mass ~ 600 Msun

GAS TEMPERATURE FROM H,CO
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COLUMN DENSITY OF C*: ANALYSIS OF [“C II] 10
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® ['2C I1] optical depth using *C/**C abundance ratio of 65: T~ 0.9 to 4.7
e T_~ 80 to 255K, with most positions having 110-130 K

® N(C*) ~ 3-7x10% cm?

e Total mass seen in C'~440 M__(n=3000 cm™, Tex=100 K)




ANALYSIS OF [C IT], [OI] & CO EMISSION USING PDR MODELS  ,,

4500-5300

® 1-D Photo Dissociation Region Models by Kaufman et al
(2006)

® Calculate intensities of tracers of PDRs as a function of
density (n(H,)) and the FUV radiation field (G )
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TRIGGERED STAR FORMATION IN TREASURE CHEST ?

" o The Treasure Chest cluster estimated to be 1.3 Myr old is too old to have
- been triggered by the formation of the cometary globule.

e TC likelt pre-existed in the cloud before G287.84-0.82 became a globule

e The lower density gas from the region got blown away by the expanding
Carina H 11 Region

e Globule continues to be eroded from the outside by the winds from n Car
and Tr 16, but the expanding H 11 region of TC erodes it even faster

e Globule has enough dense gas (~1000 Msun) to form stars, but the
timescale for formation is longer than the time needed to completely
photo-evaporate the globule.
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SUMMARY

e Study of distribution of dust and gas (and magnetic field) in pillars/globules/shells is
a method of understanding the effect of radiation from massive stars on the ISM |

¢ Overall structure of G287.84-0.82 consistent with being sculpted by radiation and
wind from n Car & Trumpler 16

¢ The velocity-resolved [C II] and [O I] observations enabled separation of diffuse and
dense PDR gas

+ Compared intensity ratios with radiative transfer and PDR models to constrain the
kinetic temperature and density of the gas in the globule

¢ Treasure Chest cluster unlikely to have been triggered by the expansion of the Carina
H 11 region

¢ TC dominates the structure of the PDR inside the head of the globule & appears to be
eroding the region faster than the star formation timescale.
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THANK YOU
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