The PDR structure and kinematics around the compact HII regions S235 A and S235 C with [CII], [13CII], [OI] and HCO+ line profiles

Maria S. Kirsanova Institute of Astronomy, Russian Academy of Sciences SOFIA tele-talk November 4, 2020

in collaboration with:

Ossenkopf-Okada, V., Anderson, L. D., Boley, P. A., Bieging, J. H., Pavlyuchenkov, Ya N., Luisi, M., Schneider, N., Andersen, M., Samal, M. R., Sobolev, A. M., Buchbender, C., Aladro, R., Okada, Y.

paper: 2020 MNRAS 497 2651

Photodissociation regions:

Tielens & Hollenbach, 1985

Expanding H_{II} regions → expanding PDRs

Recent observations:

Indirect: no separation between the H₂ and CO dissociation fronts

Goicoechea et al., 2016

Direct: [CII] 158 micron pv diagram

Expanding H_{II} regions → expanding PDRs

Time-dependent PDR models:

1D spherical or plane-parallel geometry

Hosokawa & Inutsuka, 2005 Kirsanova et al., 2009 Bron et al., 2018

non-uniform density structure

Krumholz et al., 2007 Peters et al., 2010 Arthur et al., 2011

Aims of study

1) Study the geometry and gas kinematics in PDRs around two compact HII regions. Does the [CII] line trace the kinematics there?

2) Test whether the observed properties of the PDRs match the predictions of spherical models.

[CII] at 158 micron:

 no emission from the from neutral wall

Anderson et al., 2019

Compact HII regions S235A and S235C and a stellar cluster between them

[13CII] and [CII] at 158 micron, HCO+(3-2) at 267 GHz

Pv diagrams for [СII] и HCO+(3-2)

Do the PDRs expand with $V_{exp} = 2 \text{ km s}^{-1}$?

The [CII] profiles might be affected by self-absorption effect and do not trace expansion

Deep integrations to observe [13C11]

We observed additional positions in the [CII] and [13CII] micron lines in order to determine the optical depth of the [CII] emission + [OI] line at 63 micron to estimate gas density.

Averaged spectra

Both the [CII] and [OI] lines have a dip at -16 km s⁻¹.

Map of the [13CII] spectra in S235 C

 $T_{\rm mb[CII]}$

- 1) east-west velocity gradient
- 2) $V_{[13CII]} > V_{HCO+(3-2)}$ in positions 1 and 3

$$2 \le \tau_{\text{[CII]}} \le 5$$

$$T_{\text{ex}} \approx 60-70 \text{ K}$$

Map of the [13CII] spectra in S235 A

 $40 \le T_{ex} \le 90 \text{ K}$

1) east-west velocity gradient

2)
$$V_{[13CII]} > V_{HCO+(3-2)}$$
 in positions 3, 6 and 9

molecular gas is expanding towards the observer $V_{\rm exp}$ up to 1 kms⁻¹

Interesting fact: the HII regions in the giant molecular cloud G174+2.5 are expanding towards the observer!

Comparison of N_{c+} и N_{co}

The H_{II} regions are situated on the border between the dense molecular and more diffuse atomic gas.

MARION: chemo-dynamical model of an expanding HII region + PDR

 1D gas/dust dynamics based on Zeus code.

Gas in PDRs:

ionization & dissociation

Kirsanova et al., 2009, 2019, 2020

- cooling & heating

chemical reactions

Dust and PAHs in PDRs:

after MARION calculation:

Pavlyuchenkov et al., 2013 Akimkin et al., 2015, 2017

Radiative transfer with
 SIMLINE code (Ossenkopf et al.-2001)

Murga et al., 2019

Best model selection criteria:

We can trace the evolution of the physical parameters of the Hill regions and select the moment of best agreement between the simulated and observed values of the parameters.

- radii of the H_{II} regions ≈ 0.1 0.3 pc.
- $-n_e = 1000$ and 500 cm⁻³ within a factor of 2 for S235A and C S235 C, respectively.
- single-peaked profiles of the [13C11] and HCO+(3-2) lines
- the average intensities of the [CII], [13CII], [OI] and the [13CII] lines are close to the observed values within a factor of 2.
- expansion velocity ≈ 1 km s⁻¹.
- -3 ≤ τ_{CII} ≤ 10 and 3 ≤ τ_{CII} ≤ 5 for S235 A and S235 C, respectively.

Best models:

$$T_{eff} = 27000K$$

S235A: $n_{gas} = 5.10^4 \text{ cm}^{-3}$

S235C: n_{gas}^{3} =5·10³ cm⁻³

model age:

S235A: 6·10⁴ years

S235C: 3·10⁴ years

S235 A S235 C T_R (K) 0.4 0.6 0.8 T_R (K) 0.4 0.6 0.8 0.0 [13CII] [13CII] 2 -V (km s⁻¹) $V \text{ (km s}^{-1})$ offset (arcsec) offset (arcsec) $T_R(K)$ $T_R(K)$ 5 10 16 21 26 32 37 42 5 10 16 21 26 32 37 42 4 -25 -50-50-25offset (arcsec) offset (arcsec) 0.5 T_R (K) 1.0 1.5 T_R (K) 3 4 6 7 8 10 11 [OI] 2 - $V \text{ (km s}^{-1}\text{)}$ $V \text{ (km s}^{-1})$ 50 25 offset (arcsec) offset (arcsec)

PV diagrams for the best models:

- the [13C11] is sigle-peaked
- the HCO⁺(3–2) line is single-peaked
- the [C_{II}] line is singlepeaked, the line is not optically thick!
- the [O_I] line is doublepeaked
- the peak-to-peak velocity difference of the [O_I] line is $V_{red}-V_{blue}=2\cdot V_{exp}$

Problem: low τ_{CII}

Solution 1: increase thickness of the C⁺ layer

original width multiplied by 2

original width multiplied by 3

photons
penetrate deeper
in non-uniform
and clumpy
medium

Problem: low τ_{CII}

Solution 2: increase elemental abundances

CLOUDY «ISM» set of abundances: $x(C)=2.5\cdot10^{-4}$ instead of whigh-metallicity» abundances: $x(C)=1.2\cdot10^{-4}$ (Wakelam & Herbst, 2008)

Conclusions

The double-peaked [C_{II}] and [O_I] line profiles arise due to with high optical depth and are not tracing the expansion of the PDRs.

However, an expanding motion of the $[C_{II}]$ -emitting layer into the molecular layer with a velocity up to $1 \, \mathrm{km} \, \mathrm{s}^{-1}$ was found in both PDRs with $[^{13}C_{II}]$ and HCO⁺(3-2) lines.

Physical parameters of the H_{II} regions and integrated intensities of the [¹³C_{II}], [C_{II}], and [O_I] lines are reproduced by a 1D spherical model. However, the model does not reproduce the double-peaked [C_{II}] line profiles and high optical depth of the line.

The [O_I] line profiles are the best tracers of the expanding motion in the considered PDR models in comparison with the [C_{II}], $[^{13}C_{II}]$, and HCO⁺(3-2) lines.