OPENING A NEW WINDOW ON OUR ORIGINS WITH SOFIA-HIRMES

The HIRMES team

HIRMES Science Working Group				
Investigator	Institution	Investigator	Institution	
Arendt, Richard*	UMBC	Pontoppidan, Klaus	STScI	
Bergin, Edwin	U. Michigan	Richards, Samuel*	USRA	
Bjoraker, Gordon	GSFC	Roberge, Aki	GSFC	
Chen, Christine*	STScI	Rostem, Karwan*	UMBC	
Kutyrev, Alexander	U. Maryland	Stacey, Gordon	Cornell U.	
Melnick, Gary	Harvard U.	Tolls, Volker*	Harvard U.	
Milam, Stefanie	GSFC	Su, Kate*	U. Arizona	
Moseley, Harvey	GSFC Emeritus	Watson, Dan	U. Rochester	
Neufeld, David	Johns Hopkins U.	Wollack, Edward	GSFC	
Nikola, Thomas*	Cornell U.			
* Investigator added via Legacy Science Investigation proposal				

HIRMES talk schedule

FY20 HIRMES Tele-Talks				
Instrument Overview	4 December	Matt Greenhouse		
Protoplanetary Disks	11 December	Klaus Pontoppidan		
Comets	15 January	Stefanie Milam		
Deuterium in Giant Planets	29 January	Gordon Bjoraker		
Debris Disks	5 February	Christine H. Chen		

Most planets likely form within 10-20 AU

The compositions of planets depend on their birth location

The transport of volatiles can also change composition

VLT SPHERE – micron dust/gas

ALMA/DSHARP – mm dust

Planet-forming disks have different regimes of volatiles

Bulk composition of gas and dust tends to be traced in IR

Based on the standard TT ProDimo Model (Woitke et al. 2009)

The mass of planet-forming matter

The trail of water

The origins of life's elements

X/dust

Classical mass tracers, CO and dust, underestimate mass

Ansdell et al. 2016

Hydrogen deuteride as a better mass tracer

Bergin et al. 2013; McClure et al. 2016

Trapman et al. 2017

HD disk mass is a synergy between ALMA and a FIR facility

Any molecule from ALMA/JWST

- HD \rightarrow robust tracer of H₂
- J=1-0 at 112 micron
- We detected HD in 3 disks with Herschel-PACS
- The HD line is temperature dependent
- Requires good models of disk temperature

112 micron spectroscopy

The trail of water

Combining Spitzer and Herschel-PACS detected surface snow lines

Zhang+, 2013 Blevins+ 2016

JWST will create a census of terrestrial planet-forming chemistry

Lowest H₂O energy available to JWST: ~800 K

Classical methods to detect ice in disks

Ices in a Protoplanetary Disc

NASA / JPL-Caltech / K. Pontoppidan (Leiden Observatory)

Spitzer Space Telescope • IRS ESO • VLT-ISAAC ssc2004-20c

Water ice emission using FIR phonon modes

63 micron [OI] as a tracer of disk gas thermal balance

High-resolution Mid-InfraRed Spectrometer

HIRMES

GSFC SDL PCS Cornell USRA

CfA STScI Umich JHU Rochester UofA Matt Greenhouse (PI) -- Science WG: Ted Bergin, Christine Chen, Gary Melnick, Klaus Pontoppidan, Aki Roberge, Kate Su, Dan Watson, David Neufeld, Gordon Stacey, Gordon Bjoraker, Stefanie Milam

Richards et al. 2018, JAI

- Provide Herschel-PACS line sensitivity
- at high spectral resolving power
- (R=50,000-100,000)
- cover unexplored region between Spitzer and Herschel
- increase spectral mapping speeds

Line tomography as an independent measure of abundance distributions

Value of resolving power

Transmission from the stratosphere

Comparison with existing HD detections

The HIRMES sensitivity is achieved by...

Richards et al. 2018 Barrentine et al. 2018

Brown et al. 2018 Miller et al. 2018 Douthit et al. 2018

Planned legacy science investigation

- For the community
- No proprietary time
- Lots of remaining potential for GO programs
- 1. HD: measure disk masses, needed by ALMA+JWST studies of the same disks
- 2. Water vapor: locate inner disk molecular gas observed by JWST
- 3. Water ice: measure ice/rock ratio in ALMA+JWST selected disks
- 4. Oxygen: measure energy balance/critical input to thermochemical models

Available protoplanetary disk targets

High-resolution of HIRMES observations of TW Hya

18 km/s scan, 4 hours

36 km/s scan, 6 minutes

Low-resolution simulations of ice

Summary of future infrared disk spectroscopy

