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Background: Polycyclic Aromatic 
Hydrocarbons

• Polycyclic Aromatic Hydrocarbons 
(PAHs) are multi-ringed organic 
compounds 

• Alternating single and double 
bonds delocalize e- density and 
increases resistance to radiolysis

• PAHs, their ions, and derivatives 
are thought to be ubiquitous in 
space

• Key infrared (IR) bands: 3.3, 6.2, 
7.7, 8.7, 11.3, and 12.7μm
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HST image of PPN IRAS 22272+5435
(False color)

Credit Toshiya Ueta, Margaret 
Meixner, and Matthew Bobrowsky

PAHs in Post-Asymptotic Giant Branch Objects
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Motivation
• Typical post-AGB objects have 

strong PAH emission bands at 
3.3 µm

• Bands near 3.4 µm typically 
attributed to anharmonic
“hot bands” and overtone 
and combination modes

• Some post-AGB objects have 
abnormally large 3.4 µm  
features possibly linked to 
the presence of aliphatics

IRAS 21282+5050 from Jourdain de Muizon et al. (1986)
IRAS 22272+5435 and IRAS 04296+3429 from Geballe et al. (1992)4



Hypothesis:

Aliphatic groups (moieties) from PAH derivatives 
with excess peripheral hydrogen (Hn-PAHs) may 

significantly contribute to the abnormally large 3.4 
µm emission band in some post-AGB objects
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What is an Hn-PAH?

Naphthalene
(PAH)

1,2,3,4-
tetrahydronaphthalene

(Hn-PAH) 
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Consequences of excess peripheral 
hydrogen in Hn-PAHs

• Aromatic and aliphatic will moieties exist within the
same molecule, reducing that molecule’s resistance to
radiolysis because of some loss of e- delocalization

• Adjacent planar (SP2) bond hybridization (aromatic)
and tetrahedral (SP3) bond hybridization (aliphatic)
leads to ring strain near their interface

• This strain causes spectroscopically observable changes
that can be measured in laboratory experiments
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Goals
• Obtain IR spectra of of Hn-

PAHs
• Characterize changes in the 

IR spectra of families of Hn-
PAHs as a function of 
increasing hydrogenation

• Identify telltale spectral 
features of Hn-PAHs

• Compare laboratory derived 
spectra of Hn-PAHs to 
observational data
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Methods
• Experiments conducted in 

the Ames Astrochemistry Lab 
using a cryovacuum chamber
– ~10-8 torr at 15K

• All sample PAHs/Hn-PAHs 
were diluted in an argon 
matrix with Ar/PAH > 1000/1 
to reduce intermolecular 
interactions and simulate 
vacuum

• Vaccum chamber is placed in 
the beamline of the IR 
spectrometer allowing in situ 
measurements  
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• Mid-IR spectra of 23 Hn-PAHs along with parent PAHs

were collected

• Families of progressively more hydrogenated Hn-PAHs

selected to demonstrate the changes in the spectrum

• All molecules in the study were fully cyclic (no terminal

CH3 groups)

• Special focus was paid to changes in the 3.2—3.6 µm

region (C—H stretch) as well as the 6.9 (CH2 scissoring)

region of the IR spectrum

Methods Continued
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Experimental Setup

KBr Vacuum Window

Infrared 
Beam Axis

Argon Deposition
Line

Heating Wire

PAH Sample
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Naphthalenes (3 µm region)

270028002900300031003200

Naphthalene

DHN

THN

OHN

cïDHN

tïDHN

Frequency (cm−1)

3.73.63.53.43.33.2
Wavelength (µm)• Naphthalene: Only aromatic 

C-H stretch

• DHN/THN: Growth of 
aliphatic features

• OHN: Loss of 
aromatic/olefinic features

• c-DHN/t-DHN: Fully 
aliphatic

H

H

H

H

12



Naphthalenes (5-20 µm region)
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• Naphthalene: Quartet 
C-Hoop band

• DHN: Quartet + olefinic C-
Hoop band, growth of 
methylene scissoring bands

• THN: Quartet C-Hoop band

• OHN/c-DHN/t-DHN: No C-
Hoop band

H
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Other Hn-PAHs studied

Sandford et al. (2013) ApJS. 
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Hn-PAHs by degree of hydrogenation

• To learn more about how increasing levels of hydrogenation
change the spectra of PAHs, we grouped all molecules in
the study into 4 categories:

- Aromatic - Minimally hydrogenated
- Heavily Hydrogenated - Aliphatic

• In general, for Minimally hydrogenated molecules the
average aliphatic moiety in a molecule is more strained
because it is more likely to be adjacent to aromatic
moieties

• In general, for Heavily hydrogenated molecules the
average aliphatic moiety in a molecule is less strained
because it more likely to be adjacent to other aliphatic
moieties
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• Rapid growth of aliphatic/slow 
loss of aromatic bands

• Cyclic aliphatics are strained 
compared to linear aliphatics

• Strain causes a blueshift in 
aliphatic C-H modes 

• Adjacent aromatic/aliphatic 
increases strain

• In general, minimal 
hydrogenation leads to more 
strain

Co-added spectra: 3.2-3.6 µm region
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• CH2 scissoring mode grows 
with more hydrogenation

• Strain causes a redshift in 
aliphatic C-H modes 

• Adjacent aromatic/aliphatic 
further increases strain

• In general, minimal 
hydrogenation leads to 
more strain

Co-added spectra: 6.9 µm band
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• As hydrogenation increases, the aromatic C-H stretch band
strength decreases and aliphatic bands grow in their place

• As hydrogenation increases, methylene scissoring bands grow

• C-H out-of-plane bending modes are changed or eliminated by
hydrogenation

• Strain from adjacent aliphatic and aromatic moieties shifts the
band position of the aliphatic C-H stretch (blueshift) and the
CH2 scissoring modes (redshift)

Summary of Laboratory Results
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Hn-PAHs significantly contribute to the abnormally large 3.4 µm
features observed around some protoplanetary nebulae

– There should be little to no emission from methyl C-H stretch modes

– C-H stretch features should be blueshifted relative to canonical positions
for linear aliphatics because of both ring strain and strain caused by
adjacent aromatic/aliphatic moieties

– If methylene C-H stretch modes are responsible for the 3.4 µm feature, a
methylene CH2 scissoring mode must also appear near 6.9 µm

– The 6.9 µm feature should be redshifted relative to canonical positions for
linear aliphatics because of both ring strain and strain caused by adjacent
aromatic/aliphatic moieties

Hypothesis:
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Complication
• It is known that the process of emission can cause a
redshift of ~15 cm-1 in PAH bands (relative to their
absorption spectra)

• If methylene bending modes behave similarly, this
could potentially explain some redshifting in the 6.9
µm band

• No directly relevant laboratory data exist to address
this

• A better understanding of how much the methylene
scissoring mode may shift is needed
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New Observations:

• New observations using the Stratospheric Observatory for Infrared 
Astronomy (SOFIA) 

• FORCAST instrument (Herter et al. 2012) in cross-dispersed grism
mode (FOR_XG063)

• Data collected for 4 protoplanetary nebulae: 
– Normal PAH emitter 

• IRAS 20000+3239

– Abnormally large 3.4 µm emission features
• IRAS 22272+5435

• IRAS 04296+3429

• IRAS 05341+0852
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• Strong 3.3 µm PAH 
emission band (aromatic)

• Normal 3.4 µm features

• Normal 6.2 µm PAH band 
observed

• No detectable 6.9 µm 
band

Normal PAH emitter IRAS 20000+3239
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SOFIA Observations
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• Little to no apparent 
emission from CH3 stretch

• Slight blueshift from 
canonical methylene CH 
stretch modes

• Methylene scissoring mode 
readily apparent near 6.9 
µm

Abnormal 3.4 µm emitter IRAS 22272+5435
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Abnormal 3.4 µm PAH emitters
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• Canonical band positions for 
methylene scissoring modes:
– Linear aliphatic: 6.811 µm 
– Minimally strained cyclic 

aliphatic: 6.887 µm

• Baseline correction + Gaussian 
fitting to the spectrum of IRAS 
222872+5435

• Band position of 6.9 µm 
feature: 6.899±0.005 µm 
(redshift)

Position of 6.9 µm feature for IRAS 22272+5435
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The protoplanetary nebulae spectra are
consistent with the presence of Hn-PAHs

ü Little to no emission from methyl C-H stretch modes

ü C-H stretch features are blueshifted relative to canonical positions for
linear aliphatics

ü A band consistent with a methylene CH2 scissoring mode appears near 6.9
µm

ü The 6.9 µm feature is redshifted relative to canonical positions for linear
aliphatics

Summary:
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Future directions

• A study of more post-AGB objects with
abnormally large 3.4 µm features including the 6
µm region to identify and determine the precise
positions of 6.9 µm bands if present
– These objects tend to be dim
– We have observed the brightest known objects

already
– An instrument with better S/N will be required

• Laboratory studies that characterize the expected
shift in the band position of the methylene
scissoring mode in emission vs absorption
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• Normal PAH emitters with weak features at 3.4 µm possess no
clearly detectable emission features at 6.9 µm

• Post-AGB objects with abnormally large 3.4 µm features also
possess detectable emission features at 6.9 µm, consistent with
aliphatic methylene scissoring modes

• The abnormally large 3.4 µm emission features suggest that
methylene groups are far more abundant than methyl groups

• Hn-PAHs are an attractive candidate family of molecules that
could contribute to both aromatic and aliphatic features in
abnormal PAH emitters

• Hn-PAHs are also attractive because their rings contain a high
ratio of methylene to methyl moieties

• The positions of the 3.4 and 6.9 µm features may provide
additional support for the Hn-PAH hypothesis

Conclusions:
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