Mid-Infrared Kinetic Inductance Detector and Filter
Technology for Low-Resolution Spectral Imaging
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Background: Galaxy Evolution Probe
hyperspectral imager surveys and N
photometric redshifts o e

Redshifted 10" L _ Model Galaxy Spectrum & GEP-Imager Bands
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to measure the redshifts of
millions of star-forming galaxies using the prominent PAH
emission lines and silicate absorption.



Mid- / Far-IR Spectra of Active Galaxies

Diagnostics of star formation, radiation fields, obscured AGN

Model Spectra of SF and AGN-Dominated Galaxies

— 100% Star Formation
— 70% AGN, 30% SF

‘Blue’ continuum
from AGN
heating

=
o
o

Dust asso
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Spectral
models from
Dale et al.
2014 — models
emission 8 do not include
lines MIR/FIR

100 atomic fine-
structure lines
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Mid- / Far-IR Spectra of Active Galaxies

Diagnostics of star formation, radiation fields, obscured AGN

Model Spectra of SF and AGN-Dominated Galaxies

— 100% St rmation
— 70% AG % SF
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formation
Not

accessible to Spectral
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2014 — models
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MIR/FIR

100 atomic fine-
Log Wavelength (zm) structure lines

because of
atmospheric
absorption

emission
lines
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Mid-IR Spectra of Galaxies Are Very Sensitive to SF and AGN
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Low-Volume, All-Aluminum 10 pum KIDs
Single polarization architecture

This inductor
(absorber) is
coupled to an
interdigitated
capacitor to
form a micro-
resonator. The
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Noise and Sensitivities
Single polarization architecture

Noise PSD at T = 100 mK » Noise PSD at T =200 mK
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et al.
(2020)
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* Still need responsivity measurements.

* Previously achieved NEPs of 1x10'7 W Hz'/2 @ 350 um --> more sensitive
than we will need for an LVF instrument for SOFIA (Glenn et al. 2016).

* We expect these devices to be > 10x more sensitive: smaller volumes, 7,,=1
ms (Fyhrie et al. 2019, Hailey-Dunsheath et al. submitted).



Dual Polarization Architecture

Unit Cell Simulated Absorption Absorber Photograph

Absorption with Germanium Substrate
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Germanium substrate to avoid Si 14 — 17 um absorption features.
(Central plot shows mesh + substrate performance, not dielectric
substrate losses, but the wafers are 500 um thick and won’t have
substantial loss from 10 to 20 um.)



Next Steps for Mid-IR KIDs

1. Optical coupling: Fresnel plate lenses, then Fresnel lenses if needed

2. 30 um implementation
3. Fabricate on Ge substrate for 10 to 20 um (Si for A > 20 um).

x L ]
w43 rze IR-Lab

2D Fresnel plate lenses 3D Fresnel lenses (Wilson et
demonstrated for 10 um by al. 2005)
Gonzalez et al. (2004)



Spectrometer Architecture Comparison
Tailored to SOFIA (and over-simplified — apologies!)

Heterodyne
Receiver

Diffraction
Grating

Fourier
Transform

Fabry-Perot

Linear-
Variable
Filter

Ultra-high R

Moderate or high

spectral R, dispersion

of background

Moderate to high
spectral &, limited
mapping capability

High R, limited
mapping capabilit

Rapid hyperspectral
mapping, extremely
compact and simple

Limited mapping
speed

Limited mapping
speed (higher with
IFU / long slits)

Limited field of view,
no reduction of
background

Limited field of view

Limited R and
dispersion of
background

Ex: GREAT

Ex: EXES,
FIFI-LS,
HIRMES

Ex:
Herschel
SPIRE

Ex:
HIRMES

Suited to
extended
objects
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Linear-Variable Filter Spectrometer
Simple! Compact!

Linear Position Along Filter
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* Viavi Solutions is starting a design study aimed for 10 — 16 and 16— 26 um
for GEP.

 Perhaps 8.5—-13.5umand 17 — 27 um or slightly wider (metal mesh) would
be appropriate for SOFIA.
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Metal-Mesh Linear-Variable Filter Concept

Simple fall-back solution from dielectric filters.

Top Left: Unit cell of bandpass filter. Pink — wafer
substrate. Green — gold film.

Bottom: Ansys HFSS simulated transmission profiles.
Stacked filters and smaller features can increase R.

GEP would require Ge for 14 — 17 um because of
absorption, but SOFIA would not.

Transmission Transmission




Notional SOFIA Mid- / Far-IR Hyperspectral Imager

Waveband: 8.5—-13.5 um KIDs & dielectric or TESs could work also?
Resolution: R# > 8 metal mesh LVF
(R = 20 ideally?)

Waveband: 17 —-27 um KIDs & dielectric or TES also?
Resolution: R = 8 metal mesh LVF Retain R for PAHs for very
bright z ~ 1 galaxies

Waveband: 27 -370 um KIDs & 10 Cardiff TESs also
Resolution: R =3 bandpass filters

Pixel sizes: 300 um x 300 um 100 x 100 array of KIDs  Focal plane ¥~30 mm on a
FOV: from 2’ x 2" to ~8 x 8 side

Angular resolution: = 1.25”  Set by detector size Diffraction limit: ~1” @ 10
@ 10 um 1m

Rapid hyperspectral scans Scanning mirror?

aCould use Si:As and Si:SB for A < 40 um if restricted to this waveband; otherwise
two detector technologies would be required (not recommended).




Extra Slides
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Disentangling Star-Formation
and SMBH-Accretion Rates &

AGN Fraction
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Star formation & AGN can be separated with & = 8 mid/far-IR
bands (plot for GEP). AGN indicators:

» Warm dust dominant (‘blue’ mid-IR spectrum)

» Low PAH-to-continuum ratio

()



s
~
=,
—
4
©
g
0
N
©
=
-
O
C
N

Diagnostics from PAH Lines

Model Spectra of SF and AGN-Dominated Galaxies

— 100% Star Formation
— 70% AGN, 30% SF

Log Wavelength (zm)

PAHs carry 5-10% of IR
luminosity

6.2,7.7,11.3 um
luminosities correlate
with SFRs with similar
scatter to H
recombination lines
(Shipley et al. 2016)
PAH-derived SFRs depend
on gas-phase metallicity
PAH lines swamped by
mid-IR AGN continuum
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Molecular Bending-Mode Origins of PAH

Emission Lines
Transient heating by UV photons

Spectral
models from
Dale et al.
2014 — models
do not include
MIR/FIR
atomic fine-
structure lines

Model Spectra of SF and AGN-Dominated Galaxies
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FIR Fine-Structure Lines

- Circinus Seyfert 2 [S 1], [Si 1]
Galaxy 01
[Ne V], o
INe Tl 1o vy N
i Adapted
8| from
Moorwood
10 1999
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