Mid-Infrared Kinetic Inductance Detector and Filter Technology for Low-Resolution Spectral Imaging

Jason Glenn, NASA Goddard Space Flight Center July 28, 2020 Background: Galaxy Evolution Probe hyperspectral imager surveys and photometric redshifts

23 mid and far-IR spectral bands to measure the redshifts of millions of star-forming galaxies using the prominent PAH emission lines and silicate absorption.

Mid- / Far-IR Spectra of Active Galaxies

Diagnostics of star formation, radiation fields, obscured AGN

Spectral models from Dale et al. 2014 – models do not include MIR/FIR atomic fine-structure lines

Mid- / Far-IR Spectra of Active Galaxies

Diagnostics of star formation, radiation fields, obscured AGN

Spectral models from Dale et al. 2014 – models do not include MIR/FIR atomic fine-structure lines

Mid-IR Spectra of Galaxies Are Very Sensitive to SF and AGN

Low-Volume, All-Aluminum 10 µm KIDs

Single polarization architecture

Simulations predict broad absorption with 70% @ peak.

Noise and Sensitivities

Single polarization architecture

- Still need responsivity measurements.
- Previously achieved NEPs of 1x10⁻¹⁷ W Hz^{-1/2} @ 350 μm --> more sensitive than we will need for an LVF instrument for SOFIA (Glenn et al. 2016).
- We expect these devices to be > 10x more sensitive: smaller volumes, τ_{qp} = 1 ms (Fyhrie et al. 2019, Hailey-Dunsheath et al. submitted).

Dual Polarization Architecture

Germanium substrate to avoid Si $14-17~\mu m$ absorption features. (Central plot shows mesh + substrate performance, not dielectric substrate losses, but the wafers are 500 μm thick and won't have substantial loss from 10 to 20 μm .)

Next Steps for Mid-IR KIDs

- 1. Optical coupling: Fresnel plate lenses, then Fresnel lenses if needed
- 2. 30 μm implementation
- 3. Fabricate on Ge substrate for 10 to 20 μ m (Si for $\lambda > 20 \mu$ m).

2D Fresnel plate lenses demonstrated for 10 μm by Gonzalez et al. (2004)

3D Fresnel lenses (Wilson et al. 2005)

Spectrometer Architecture Comparison

Tailored to SOFIA (and over-simplified – apologies!)

Architecture	Advantages	Disadvantages	Comments
Heterodyne Receiver	Ultra-high ${m {\mathcal R}}$	Limited mapping speed	Ex: GREAT
Diffraction Grating	Moderate or high spectral \mathcal{R} , dispersion of background	Limited mapping speed (higher with IFU / long slits)	Ex: EXES, FIFI-LS, HIRMES
Fourier Transform	Moderate to high spectral \mathcal{R} , limited mapping capability	Limited field of view, no reduction of background	Ex: Herschel SPIRE
Fabry-Perot	High $oldsymbol{\mathcal{R}}_{\prime}$ limited mapping capability	Limited field of view	Ex: HIRMES
Linear- Variable Filter	Rapid hyperspectral mapping, extremely compact and simple	Limited $\boldsymbol{\mathcal{R}}$ and dispersion of background	Suited to extended objects

Linear-Variable Filter Spectrometer

Simple! Compact!

- Viavi Solutions is starting a design study aimed for 10 16 and 16– 26 μm for GEP.
- Perhaps $8.5 13.5 \, \mu m$ and $17 27 \, \mu m$ or slightly wider (metal mesh) would be appropriate for SOFIA.

Metal-Mesh Linear-Variable Filter Concept

Simple fall-back solution from dielectric filters.

Top Left: Unit cell of bandpass filter. Pink – wafer substrate. Green – gold film.

Bottom: Ansys HFSS simulated transmission profiles. Stacked filters and smaller features can increase \mathcal{R} .

GEP would require Ge for $14 - 17 \mu m$ because of absorption, but SOFIA would not.

Notional SOFIA Mid- / Far-IR Hyperspectral Imager

Instrument Parameter	Technology	Comments
Waveband: $8.5 - 13.5 \mu m$ Resolution: $\Re \ge 8$ ($\Re = 20 ideally?$)	KIDs & dielectric or metal mesh LVF	TESs could work also ^a
Waveband: $17 - 27 \mu m$ Resolution: $\Re \ge 8$	KIDs & dielectric or metal mesh LVF	TES also ^a Retain \mathcal{R} for PAHs for very bright z ~ 1 galaxies
Waveband: $27 - 370 \mu\text{m}$ Resolution: $\mathcal{R} = 3$	KIDs & 10 Cardiff bandpass filters	TESs also
Pixel sizes: 300 μm x 300 μm FOV: from 2' x 2' to ~8' x 8'	100 x 100 array of KIDs	Focal plane ~30 mm on a side
Angular resolution: ≥ 1.25" @ 10 μm	Set by detector size	Diffraction limit: ~1" @ 10 μm
Rapid hyperspectral scans	Scanning mirror?	

 $^{\rm a}$ Could use Si:As and Si:SB for $\lambda < 40~\mu m$ if restricted to this waveband; otherwise two detector technologies would be required (not recommended).

Extra Slides

Disentangling Star-Formation and SMBH-Accretion Rates

Jeremy Darling

Star formation & AGN can be separated with \Re = 8 mid/far-IR bands (plot for GEP). AGN indicators:

- Warm dust dominant ('blue' mid-IR spectrum)
- Low PAH-to-continuum ratio

Diagnostics from PAH Lines

- PAHs carry 5-10% of IR luminosity
- 6.2, 7.7, 11.3 μm luminosities correlate with SFRs with similar scatter to H recombination lines (Shipley et al. 2016)
- PAH-derived SFRs depend on gas-phase metallicity
- PAH lines swamped by mid-IR AGN continuum

Molecular Bending-Mode Origins of PAH Emission Lines

Transient heating by UV photons

Spectral models from Dale et al. 2014 – models do not include MIR/FIR atomic fine-structure lines

FIR Fine-Structure Lines

Adapted from Moorwood 1999