Next Generation Large-Format Spectroscopic Arrays for SOFIA

How a new generation of heterodyne arrays will justify continuing SOFIA's operation

Paul F. Goldsmith
Jet Propulsion Laboratory

SOFIA Instrument Roadmap workshop II

July 27, 2020

With special thanks to Jose Siles, Jon Kawamura, and Imran Mehdi

The Importance of Velocity-Resolved Spectroscopic Imaging

- Spectroscopy has for years been recognized as SOFIA's strongest area of contribution to astrophysics
 - Access to critical lines blocked by the atmosphere (fine structure lines including [CII], [NII], [OI]), unique molecular lines (HF), and high-J CO lines
- High resolution spectroscopy is even more favorable for SOFIA
 - Residual warm atmosphere and warm telescope DO NOT significantly degrade sensitivity of observations (this is not the case for photometry and low-resolution spectroscopy)
- The value of such data for unraveling key processes related to star formation, the life cycle of the ISM, and feedback is enormously enhance by high resolution spectroscopic imaging

GREAT (with upGREAT & 4GREAT) has Enabled High Resolution Spectroscopic for SOFIA + Significant Imaging

 upGREAT LFA has 14 pixels at 1.9 THz and 7 pixels at 4.7 THz with limited tunability

[CII] traces component of ISM not seen in CO

The large structure to South of θ^1 Ori C is an expanding bubble. Requires high resolution imaging to understand the structure: **2600 M**_{sun} **shell expanding at 13 kms**⁻¹**. E** = **4x10**⁴⁸ **erg**

[CII] Line Profiles are Complex due to Source Structure and Line of Sight Absorption

Gerin+ 2015 Herschel HIFI & PACS

The low velocity resolution PACS spectra give completely erroneous picture of the [CII] emission from the source due to blending with foreground absorption by diffuse LOS clouds

Herschel HIFI

Herschel PACS R~ 1200 (250 kms⁻¹)

What we Learn from Fine Structure Line Emission from Nearby Galaxies is Greatly Enhanced by Resolving Spectral Lines (R > 10⁵)

[CII] Emission from M51 (Pineda+ 2020)

[OI] Fine Structure Line Emission has been Difficult to Interpret

Oxygen is the 3^{rd} most abundant element IP of $O^0 = 13.614$ eV, just greater than H^0

In Photon Dominated Regions (PDRs) associated with massive young stars, oxygen fine structure line emission is extremely strong, and the 63 μ m line is widely used as a tracer of star formation

QUESTIONS:

How much neutral atomic oxygen is there in GMCs?

How does [OI] 63 µm trace star formation?

Herschel/PACS data (Gerin+ 2015)

[OI] Mapping of W3 Galactic GMC/PDR

Goldsmith, Langer, Seo 2020

[OI] 63 µm Self-Absorption Evident in ~1/2 of Clouds Surveyed

W3 is likely the most extreme case with absorbing O^0 having $\tau = 7$

Orion shows no clear evidence of selfabsorption

The radiation from O⁰ in "hot" portion of PDR largely absorbed by intervening low-excitation material

Result is **vastly weakened** [OI] 63 μ m line Unresolved spectroscopy of 145 μ m line suggests it is relatively unaffected

What we see is highly dependent on **geometry**

Herschel/PACS Gave Tantalizing Glimpse of Fine Structure Line Emission from (U)LIRGS

Tracing the Ionized ISM – Direct Probe of Massive **Star Formation**

NII 205 µm SOFIA/GREAT

Most are well-behaved but some have hints of complex structure that deserves follow up Why is K39 10x stronger than all the others?

Need: High Spectral Resolution Imaging Receiver for SOFIA Studies of FIR Fine Structure & Molecular Lines

FREQUENCY COVERAGE

• [NII] 205 μm 146	1 GHz
--------------------	-------

• Multiple high-J CO lines; other FS lines

RESOLUTION R = 10^6 (0.3 km s⁻¹)

PIXEL COUNT AND MAPPING SPEED

- Time on SOFIA is limited and expensive!
- Combine
 - State of the art noise temperature
 - High coupling efficiency
 - Extended bandwidth
 - Maximum pixel count

WHAT IS FEASIBLE?

1400 - 2100 GHz now!

{3300 – 5800 GHz with development}

4 GHz IF bandwidth (650 kms⁻¹ for [CII])

128 pixel square array

8X8 array times 2 polarizations

Enabling Technology for Next-Generation Submm Heterodyne Arrays I. — REPRODUCIBLE, HIGH SENSITIVITY HEB MIXERS

Heterodyne: Combine (weak) astronomical signal with (strong) Local Oscillator (LO) signal in nonlinear device. Then amplify the *difference* frequency (called IF for intermediate frequency) signal generated in low noise amplifier, and finally analyze spectrally

Hot Electron Bolometer (HEB) mixers are widely used throughout submillimeter. Used in Herschel/HIFI, SOFIA/GREAT, STO2, GUSTO, ASTHROS

Well-developed Undemanding (T > 6 K) thermally Low LO power (few μ W) 4GHz IF bandwidth \Leftrightarrow 650 kms⁻¹ @ [CII]

HEB Array Technology

- NbN devices routinely processed in MDL at JPL
- Individual devices diced from wafer
- Dropped into backshort/holder coupling to waveguide input
- Held in place by frontpiece consisting of 16 drilled multi-flare-angle feedhorns*
- 4 frontpieces + backshort make 64pixel mixer array

* These feedhorns offer broadband, high efficiency coupling to symmetric Gaussian beam

HEB Mixer Performance is Well-Established: T(DSB) < 1000 K between 1.4 THz and 5 THz

Array Concept: Replicate Single-Pixel Chain

Individual final LO frequency multiplication stages for EACH mixer allows OPTIMIZATION of power and achieving lowest noise temperature

Not shown: input polarizing grid separates linear polarizations. 64 pixels in 8x8 array per polarization

Very low risk; simple assembly, alignment, and cooling

Heterodyne Focal Plane Array Imager on SOFIA - simple and low risk

Heterodyne Focal Plane Array Optics – Low

Gaussian beam telescope

Loss and Very Straightforward

Enabling Technology for Next-Generation Submm Heterodyne Arrays II. – WIDELY TUNABLE LOCAL OSCILLATOR SOURCE

J. Siles, JPL

Huge LO Improvements since Herschel/HIFI

16-pixel LO module (~2016)

Insight: If the LO system produces much more power than required, it is straightforward to

- Optimize LO power for each pixel, pumping even "demanding" pixels
- Pump N > 100 pixels in array with high yield and minimal rework/replacement

100 required

Single output horn antenna

1350 1390 1430 1470 1510 1550 1590 1630 1670 1710 1750

Output Frequency (GHz)

Jet Propulsion Laboratory
California Institute of Technology

Ultra-Broadband LOs

1350 GHz -2100 GHz range

Ultra-Broadband LOs: First Integrated 1350-2070 GHz LO System

4 pixel frequency multiplied source with two bands integrated into one single channel

One order of magnitude reduction on size, mass and power

Enabling Technology for Next-Generation Submm Heterodyne Arrays III – DIGITAL ASIC SPECTROMETERS

FPGA spectrometers have worked well for GREAT. **However** – while power is modest (~20W), for large-format arrays it becomes excessive (2.5 kW)

The solution is system on chip digital ASIC spectrometer developed by JPL & UCLA

CURRENT: SVII 65 nm 3 GHz BW, 4096 channels 0.6 W

NEARLY DONE: SVIII – 6.5 GHz BW, 8192 channels, 4

bits, 1.7 W

Have flown on airplanes & balloons (ReckTangLE); being baselined for ASTHROS APRA balloon (launch 2023) and proposed for Astrophysics Pioneer Mission

Zhang+ 2018 IEEE Int'l. Symp. Circuits & Systems

SVIII ASIC Digital Spectrometer Chip & Board

0 - 6 GHz (or 6 - 12 GHz aliased)

Analog inputs (ADC included)

Program for space qualification (radiation, temperature...) has been started, but suitable for SOFIA at the present time

Current Status and What Should be Done for the Future of SOFIA

- Velocity resolved spectroscopy has been huge strength for SOFIA thanks to GREAT instrument. It can be even more productive in the future
- To have dramatically greater scientific impact we need to increase mapping speed by an order of magnitude and be able to sample all major components of ISM – (excited) molecular, PDR, and ionized gas
- A 128-pixel spectroscopic array will have an order of magnitude increase in mapping speed compared to upGREAT LFA and hugely more compared to HFA and 4 GREAT, and can cover needed frequency range
- This can be implemented now, but technology development program will® be valuable to
 - Improve **tuning range** of LO sources
 - Support development of frequency-multiplied sources above 2 THz
 - Increase IF **bandwidth** of mixers above 2 THz support development of MgB₂ mixers