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Red supergiants...
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Red supergiants...
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Red supergiants...and evolved massive stars
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red supergiants: cold,
large, dusty phase of
evolution for ~8-30Mo

stars

yellow supergiants:
rare post-MS (and
post-RSG?) phase with
mass loss, pulsations

Wolf-Rayet stars:
post-MS hot stripped-
envelope stars

LBVs: high-mass
evolved variables with
substantial sporadic
mass loss



Who cares about red supergiants?
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Who cares about red supergiants?

SN 2008bk

ideal extragalactic targets

core-collapse progenitors

Figer+ 2006

“magnifying glasses”
for massive star evolution



Challenges: RSG physical properties
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Challenges: RSG physical properties
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Challenges: RSG physical properties
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Challenges:
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Challenges: RSG physical properties
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» temperature also crucial for luminosities because of bolometric
corrections

e mass is strongly degenerate with luminosity
« binary, merger, and mass loss effects all complicate interpretation



Challenges: RSG mass loss

RSGs shed an enormous amount of mass from their outer layers during
their lifetimes...

VY Canis Majoris

Smith+ 2001



Challenges: RSG mass loss

RSGs shed an enormous amount of mass from their outer layers during
their lifetimes...impact their evolution, observables, and ISM contribution.

' 1 1 1 I I L] 1 L} 1

20 M . Meynet+ 2015 |

VY Canis Majoris

1 L ] 1

’ ,
- -’-
\
(.
—
—
—

e

) A FIVL | ' 1 1 | ] ] L 1] ) | I’

YR Y RIS S [N WY W v [

Smith+ 2001




Challenges: RSG mass loss

RSGs shed an enormous amount of mass from their outer layers during
their lifetimes...impact their evolution, observables, and ISM contribution.
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Challenges: Low-mass contaminants

Tools like GAIA and surface gravity effects can distinguish RSGs and
foreground dwarfs...
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Challenges: Low-mass contaminants

Tools like GAIA and surface gravity effects can distinguish RSGs and
foreground dwarfs...
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Challenges: Low-mass contaminants

Tools like GAIA and surface gravity effects can distinguish RSGs and
foreground dwarfs...

...but contamination from RGB and AGB stars becomes a problem.
« lower M;  different interior structures

« longer lifetimes  different nucleosynthesis processes
- different evolutionary pathways « different mass loss processes




RSGs in the infrared

Upcoming space telescopes will be focused on IR observations...

"
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|deal for:

e local and extragalactic RSG populations
e “fixing” our large error bars on pre-explosion imaging of SN progenitors...

e observing RSG mass loss and dust production



RSGs in the infrared

Upcoming space telescopes will be focused on IR observations...

...and RSGs are ideal (but under- studled') targets in the IR.
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RSGs in the infrared

We can improve this in the JWST era using IR models and
observations of RSGs to...
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RSGs in the infrared

We can improve this in the JWST era using IR models and
observations of RSGs to...
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RSGs in the infrared

We can improve this in the JWST era using IR models and
observations of RSGs to...

from Rayner+ 2009 simulate JWST photometry
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RSGs in the infrared
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Upcoming space telescopes will be focused on IR observations...
...and RSGs are ideal (but under- studled') targets in the IR.
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RSGs in the infrared

Upcoming space telescopes will be focused on IR observations...

...and RSGs are ideal (but under-studied!) targets in the IR.
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RSGs in the infrared

Upcoming space telescopes will be focused on IR observations...
...and RSGs are ideal (but under-studied!) targets in the IR.
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(e.g. Britavskiy et al.) ! R i
« potentially ID RSGs vs. giants -

e quantify mass loss

o determine circumstellar dust
quantity, composition
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RSGs with SOFIA

FORCAST as a SOFIA spectrograph:

e grisms cover from 4.8-40um

e 2.4" slit yields R~130-300 (comparable to resolution of
MIRI on JWST!)

e for Galactic RSGs, S/N = 100 at 5um, = 5 at 13um
(but it can handle bright targets!)



RSGs with SOFIA

Unique advantages of SOFIA/FORCAST RSG SWC spectra:

e 5-8um: can quantify precise continuum where dust overtakes
photospheric emission

e 5-13um: can identify discrete emission features from dust species
(alumina, melilite, olivine, MgFeO)

e identify new diagnostics (photometric, spectroscopic) for RSGs

e short exposure times = large Galactic RSG sample!

Mid-IR spectral library of RSGs for JWST era!
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RSGs with SOFIA

SOFIA Cycle 7 observations

o ~70 potential targets = “survey mode” (like popular HST/SNAP)
e ~20 observed so far during Christchurch (July 2019) and
Palmdale (Oct 2019) flights

(also flying on SOFIA is so incredibly cool...)



RSGs with SOFIA

SOFIA Cycle 7 observations
o ~70 potential targets = “survey mode” (similar to HST/SNAP!)

e ~20 observed so far during Christchurch (July 2019) and
Palmdale (Oct 2019) flights
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(extremely) preliminary results!



RSGs with SOFIA

SOFIA Cycle 7 observations
o ~70 potential targets = “survey mode” (similar to HST/SNAP!)

e ~20 observed so far during Christchurch (July 2019) and
Palmdale (Oct 2019) flights

Other potential RSG applications:

e imaging the circumstellar environments of
dusty RSGs (including polarimetry!) VY Canis Majoris

SOFIA/

FORCAST
far-IR
imaging:

Smith+ 2001

Shenoy+ 2016
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SOFIA Cycle 7 observations
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RSGs with SOFIA

SOFIA Cycle 7 observations
o ~70 potential targets = “survey mode” (similar to HST/SNAP!)

e ~20 observed so far during Christchurch (July 2019) and
Palmdale (Oct 2019) flights

Other potential RSG applications:
e imaging the circumstellar environments of
dusty RSGs (including polarimetry!) VY Canis Majoris

o direct comparisons with RGB/AGB samples

e short exposure times and “survey”
suitability of targets make it possible to
study variability...

Smith+ 2001



RSGs with SOFIA

SOFIA Cycle 7 observations
Betelgeuse!
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SOFIA Cycle 7 observations
Betelgeuse!




RSGs with SOFIA

SOFIA Cycle 7 observations
Betelgeuse!
Dimming in optical (but not in near-IR) suggested dust...

Montarges 2020

Levesque & Massey 2020




RSGs with SOFIA

SOFIA Cycle 7 observations

Betelgeuse!

Dimming in optical (but not in near-IR) suggested dust...
...and SOFIA/EXES observations saw minimal changes in
(some) circumstellar gas velocities and line profiles
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Evolved Massive Stars with SOFIA

Yellow Supergiants
e pre- and post-SN states are hard to distinguish
e evidence of both fast- and long-period pulsations
SOFIA imaging, spectroscopy, and polarimetry in mid-IR could probe mass
loss geometry and composition in a poorly-understood (and nearby!) dataset
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Evolved Massive Stars with SOFIA

Yellow Supergiants
e pre- and post-SN states are hard to distinguish
e evidence of both fast- and long-period pulsations
SOFIA imaging, spectroscopy, and polarimetry in mid-IR could probe mass
loss geometry and composition in a poorly-understood (and nearby!) dataset

Wolf-Rayet stars
o formation channels for these stars are unclear (binaries? strong winds?)
e expected SN progenitors and sources of interstellar enrichment
SOFIA observations of Wolf-Rayet-specific dust, circumstellar geometries,
and wind interactions with ISM could probe these stars’ evolution
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Evolved Massive Stars with SOFIA

Yellow Supergiants
e pre- and post-SN states are hard to distinguish
e evidence of both fast- and long-period pulsations
SOFIA imaging, spectroscopy, and polarimetry in mid-IR could probe mass
loss geometry and composition in a poorly-understood (and nearby!) dataset

Wolf-Rayet stars

o formation channels for these stars are unclear (binaries? strong winds?)
e expected SN progenitors and sources of interstellar enrichment
SOFIA observations of Wolf-Rayet-specific dust, circumstellar geometries,
and wind interactions with ISM could probe these stars’ evolution

1.6

Luminous Blue Variables
e are just weird 14
e poorly-understood post-MS and pre-SN
where mass loss is key .
SOFIA mid-IR imaging and polarimetry '°
offers a unique tool for studying the
small sample of bright and "well-
understood” LBVs -

1.2

0.8

Gootkin+ 2020
(submitted)




Evolved Massive Stars with SOFIA

Yellow Supergiants
e pre- and post-SN states are hard to distinguish
e evidence of both fast- and long-period pulsations
SOFIA imaging, spectroscopy, and polarimetry in mid-IR could probe mass
loss geometry and composition in a poorly-understood (and nearby!) dataset

Wolf-Rayet stars

o formation channels for these stars are unclear (binaries? strong winds?)
e expected SN progenitors and sources of interstellar enrichment
SOFIA observations of Wolf-Rayet-specific dust, circumstellar geometries,
and wind interactions with ISM could probe these stars’ evolution

Luminous Blue Variables Exciting potential SOFIA
e are jIUSt WCTJird | S capabilities in mid-IR:
e poorly-understood post-MS and pre-SN o hi )
where mass loss is key high(er)-res spectroscopy
SOFIA mid-IR imaging and polarimetry e high-contrast imaging for
offers a unique tool for studying the nearby/luminous stars
small sample of bright and "well-

e imaging polarimetry and
understood” LBVs 91N P 4

spectropolarimetry



Summary

» The post-main-sequence is a crucial phase of massive star
evolution and ideal science for future IR missions; we can study
these stars’ evolution, mass loss, dust production, circumstellar
envrionments, and supernovae

« We need more data in the mid-IR to fully utilize the capabilities
of future IR missions for studying massive stars

« SOFIA is the ideal observatory for getting mid-IR spectra and
other observations of evolved massive stars, which can:

— quantify diagnostics for these stars’ physical properties
— distinguish supergiant and giant populations

— probe dust chemistry and crucial mass loss behavior

— quantify pre-SN stages of stellar evolution



