Airborne Astronomy and Stellar Occultations

Case for a significant upgrade to the FPI+ Camera

Michael J Person

Research Scientist, MIT Planetary Astronomy Lab

Director, MIT Wallace Astrophysical Observatory

Karsten Schindler
Instrument Scientist, Deutsches SOFIA Institute
Universitaet Stuttgart

SOFIA Instrument RoadMap Workshop – 27-29 July 2020

- Advantages of an airborne observatory
 - Altitude over weather

- Advantages of an airborne observatory
 - Altitude over weather

Reduced atmospheric absorption allows greater wavelength coverage

especially in the IR

- Advantages of an airborne observatory
 - Altitude over weather

• Atmospheric absorption allows greater wavelength coverage especially in the

large IR bands

- Science Potential from MOBILITY!
 - Space telescopes DO NOT replace!

Occultation Science

- High spatial resolution (a few km in the outer solar system)
 - Limited by factors other than diffraction at the telescope!
 - Measure the sizes of objects that can't be imaged
 - Measure the depth of atmospheres at km resolutions

Occultation Science

- High spatial resolution (a few km in the outer solar system)
 - Limited by factors other than diffraction at the telescope!
 - Measure the sizes of objects that can't be imaged
 - Measure the depth of atmospheres at km resolutions
- Direct measurements of atmospheres
 - Temperature, Pressure, Number Density profiles
 - Haze/Extinction profiles (atmospheres and rings)
 - Particle sizes (multi-colors)

• Much of the history of occultation science is a history of airborne

astronomy.

• Atmosphere of Mars

RE-Analysis of the 1976 Mars Occultation of Epsilon Geminorum

Saunders et al., 2020

 Much of the history of occultation science is a history of airborne astronomy.

- Atmosphere of Mars
- Uranian atmosphere

NASA Stock Photos

Much of the history of occultation science is a history of airborne astronomy.

- Atmosphere of Mars
- Uranian atmosphere
- Discovery of the Uranian rings

NASA Stock Photos

• Much of the history of occultation science is a history of airborne

astronomy.

• Atmosphere of Mars

• Uranian atmosphere

- Discovery of the Uranian rings
- Chiron jets/plumes

NASA Stock Photos

 Much of the history of occultation science is a history of airborne astronomy.

- Atmosphere of Mars
- Uranian atmosphere
- Discovery of the Uranian rings
- Chiron jets/plumes
- Pluto/Triton atmosphere and haze measurements

NASA Stock Photos

• Much of the history of occultation science is a history of airborne

astronomy.

Atmosphere of Mars

• Uranian atmosphere

- Discovery of the Uranian rings
- Chiron jets/plumes
- Pluto atmosphere/haze measurements

Much of the history of occultation science is a history of airborne

astronomy.

Atmosphere of Mars

- Uranian atmosphere
- Discovery of the Uranian rings
- Chiron jets/plumes
- Pluto atmosphere/haze measurements
- Triton atmosphere collapse

NASA Stock Photos

Occultations have been challenging!

- Long Campaigns
 - Astrometry
 - Course Planning
- Large Costs
 - Multiple flights
 - Equipment Priorities

New Age of Occultation Predictions

 GAIA has revolutionized (an in some cases removed) half of the problem

New Age of Occultation Predictions

- GAIA has revolutionized (an in some cases removed) half of the problem
- The other half of the problem (moving body ephemerides) is on the verge of falling.
 - Rubin Observatory (LSST) and other frequent all-sky surveys.

Occultation Science Targets

Science Target Class	Expected SOFIA Available Occultations over 5 years
Small Bodies w/Atmospheres (Pluto, Triton, Titan, etc.)	11
KBO Characterization	50
Centaurs (Chariklo-, Chiron-type objects)	65
Trojan Asteroids (Lucy mission)	150
Comets	2
Giant Planet Atmospheres and Rings	5 (Restricted to the brightest stars)

What do we need?

- High Speed Photometry
 - For bright stars, this is the primary limitation on spatial resolution
- Instant Accessibility
 - No more instrument conflicts/changes
 - Single-leg observations without long campaigns
- Multi-wavelength Vis/NIR Sensing
 - Enables far more detailed atmosphere/ring work

(FPI+)+ Upgrade Plan

- Adds Near-IR capability to the FPI+
 - Enables occultation multi-wavelength observations
 - Improves in-flight guiding by providing more NIR guide stars
 - SOFIA is currently blind in NIR wavelengths, adding additional science
- Permanently mounted
 - Low-maintenance cooling with no consumables.
 - Instant access w/o disturbing other instruments on the flange.

Technology Availability and Readiness

- Minimal development time
- Low cost compared to new instrument packages
- Rapid deployment over two years

For Details: I'll turn remaining time over to Karsten Schindler of the DSI FPI+ team.

Technological Availability and Readiness

FPI++ NIR Tracking and Science Camera

Karsten Schindler, DSI

Institut für Raumfahrtsysteme (IRS) Deutsches SOFIA Institut (DSI)

- Detector geometry needs to match existing optics
- No consumables
- High frame rate, minimal readout time
- Short lead time, low technical risk

Existing VIS Channel, 8.0 arcmin unvignetted FOV

Leonardo SAPHIRA e-APD HgCdTe Array - 320 x 256 pixel, 24 μm pitch

- Conceived for NIR WFS and fringe tracking
- Development initiated by ESO (Finger),
 later supported by University of Hawaii IfA (Hall)
- Current ROIC: ME1001 (fixed a glow source due to mask error on the ME1000)
 - 32 outputs, up to 10 MPixel/s parallel readout -> 3900 Hz full frame
 - Supports various reset modes (global, rolling shutter) and readout strategies (multiple non-destructive reads, CDS)
- No persistence when overilluminated

Leonardo SAPHIRA e-APD HgCdTe Array - 320 x 256 pixel, 24 μm pitch

- HgCdTe absorption layer sensitive to 0.8 ... 2.5 μm, but multiplication layer underneath up to 3.5 µm!
 - Cold short pass filters to block 2.5 ... 3.5 μm by default
 - Adjust filter cut-on to suppress ambient thermal background of warm FPI+ foreoptics
- What about the excess noise factor (F) vs gain (G)?
 - For a photometer, F should be unity always fulfilled at G=1
 - ESO / Finger et al.: Practically unity at gains that are of interest for the FPI+

Finger et al. (2016)

First Light Imaging "C-RED One" Camera (introduced 2016)

- Avoids lengthy development of cryogenic instrument and read out electronics
- SAPHIRA 24 μm pixel pitch = sweet spot for optimal sampling with existing FPI+ optics and SOFIA's shear layer seeing
- Pulse tube cooled to 80 K = no consumables
- 25 kg total weight
- System Read Noise:
 - 20 e- rms for CDS at G=1 (F=1)
 - <1 e⁻ rms for CDS at G≥20 (F~1)
- Dark current, looking at room temperature black body, 1 MHz:
 - 70 e⁻/px/s dark current (G=1)
 - 40 e⁻/px/s dark current (G~10, suppresses sensitivity >2.5μm)
- Optimized towards high frame rates (up to 3500 Hz single reads full frame) more than enough

Numerous C-RED One cameras commissioned and operational:

- MIRC-X at CHARA, combining the light from all six CHARA telescopes on Mt. Wilson
- SCExAO at Subaru (KERNEL project)

In preparation:

MAORY, Multi-conjugate Adaptive Optics Relay for ELT

More SAPHIRA arrays in the community

- WFS and fringe tracker in VLTI GRAVITY
- Lucky Imaging at NAU / Siding Springs
- IfA visitor / test instrument (Hall, Atkinson et al.) at NASA IRTF, ROBO-AO (Mt. Palomar), LASSO at Kitt Peak, KPIC at Keck
- Existing user base
- Published data in the literature
- Established product

Action Items:

- Assessment of adding 25 kg+ on the SOFIA TA (likely requires some balancing on TA side, but no show stopper)
- SWIR reimaging optics
 - Commercial lens ⇒ easy, but limited FOV
 - Custom lens to utilize full TA FOV, iterative design with manufacturer to adapt cold stop geometry
- Pulse-tube cooler's hot side utilizes closed cycle water cooler for heat transfer –
 forced air cooling is possible (demonstrated e.g. with Sunpower CryoTel cryocoolers),
 First Light open to make a change to avoid liquid on SOFIA

FWHM at NIR wavelengths ≥ 3.2 arcsec

SWIR Lens	Plate Scale	FOV	Procurement
50 mm f/1.2	1.60 arcsec/pixel	8.5 x 6.8 arcmin ²	Custom
75 mm f/1.8	1.07 arcsec/pixel	5.7 x 4.5 arcmin ²	COTS

Sensitivity Analysis

Assumptions:

- M2V type star, T=3530 K
- APD Gain = 1 ⇒ No excess noise factor
- Huge 1.6 arcsec pixels
- OH sky emission and atmospheric transmission calculated by ATRAN
 - Sky background totally dominates
 - APD gain makes little difference
- Each optical surface treated as a thermal radiation source

Current M3-1	SNR = 60 (tracking limit)	SNR = 10 (detection limit)
1 s exposure	J=12.9 mag	J=14.9 mag
3 s exposure	J=13.5 mag	J=15.5 mag

SNR vs. J-Band Magnitude of M2V-type Star

