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Utilizing SOFIA’s Overlooked Potential

• Advantages of an airborne observatory
• Altitude over weather
• Atmospheric absorption allows greater wavelength coverage especially in the 

large IR bands

• Science Potential from MOBILITY!
• Space telescopes DO NOT replace!



Occultation Science
• High spatial resolution (a few km in the outer solar system)

• Limited by factors other than diffraction at the telescope!
• Measure the sizes of objects that can’t be imaged
• Measure the depth of atmospheres at km resolutions



Occultation Science
• High spatial resolution (a few km in the outer solar system)

• Limited by factors other than diffraction at the telescope!
• Measure the sizes of objects that can’t be imaged
• Measure the depth of atmospheres at km resolutions

• Direct measurements of atmospheres
• Temperature, Pressure, Number Density profiles
• Haze/Extinction profiles (atmospheres and rings)

• Particle sizes (multi-colors)
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• Atmosphere of Mars
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Occultations and Airborne Astronomy
• Much of the history of occultation science is a history of airborne 

astronomy.
• Atmosphere of Mars
• Uranian atmosphere
• Discovery of the Uranian rings
• Chiron jets/plumes
• Pluto atmosphere/haze measurements
• Triton atmosphere collapse

NASA Stock Photos
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Person et al. in prep



Occultations have been challenging!

• Long Campaigns
• Astrometry
• Course Planning

• Large Costs
• Multiple flights
• Equipment Priorities

(Person et al., 2020)



New Age of Occultation Predictions

• GAIA has revolutionized (an in some cases removed) half of 
the problem



New Age of Occultation Predictions

• GAIA has revolutionized (an in some cases removed) half of 
the problem

• The other half of the problem (moving body ephemerides) is 
on the verge of falling. 
• Rubin Observatory (LSST) and other frequent all-sky surveys.

AURA



Occultation Science Targets
Science Target Class Expected SOFIA Available Occultations 

over 5 years

Small Bodies w/Atmospheres (Pluto, Triton, Titan, etc.) 11

KBO Characterization 50

Centaurs (Chariklo-, Chiron-type objects) 65

Trojan Asteroids (Lucy mission) 150

Comets 2

Giant Planet Atmospheres and Rings 5 (Restricted to the brightest stars)



What do we need?
• High Speed Photometry

• For bright stars, this is the primary limitation on spatial resolution

• Instant Accessibility
• No more instrument conflicts/changes
• Single-leg observations without long campaigns

• Multi-wavelength Vis/NIR Sensing
• Enables far more detailed atmosphere/ring work



(FPI+)+ Upgrade Plan

• Adds Near-IR capability to the FPI+
• Enables occultation multi-wavelength observations
• Improves in-flight guiding by providing more NIR guide stars
• SOFIA is currently blind in NIR wavelengths, adding additional science 

• Permanently mounted
• Low-maintenance cooling with no consumables.
• Instant access w/o disturbing other instruments on the flange.



Technology Availability and Readiness

• Minimal development time

• Low cost compared to new instrument packages

• Rapid deployment over two years

For Details: I’ll turn remaining time over to Karsten Schindler of the DSI FPI+ team.
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Technological Availability and Readiness

FPI++ NIR Tracking and Science Camera
Karsten Schindler, DSI
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Requirements

• Detector geometry needs to match existing optics
• No consumables
• High frame rate, minimal readout time
• Short lead time, low technical risk

SWIR Camera
1.0 – 1.65 µm

FPI+ Camera,
0.4 – 1.0 µm

New Shortpass
Dichroic Mirror;

Transition around 950 nm
d=200 mm f/4 Collimator

BAK4 / F7 Achromat

Beam from
SOFIA Telescope

(d=2.5 m f/19)

“Delay Line Assembly”
Movable folding mirrors

for independent focusing

VIS Filter Wheel

NIR Filter Wheel

SWIR Reimaging Optics

FPI+ Reimaging Optics:
Zeiss Planar 85 mm f/1.4 

Photo Lens (@f/2)

Existing VIS Channel,
8.0 arcmin unvignetted FOV

Added NIR Channel

FM3

FM4

FM2
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Detector

Leonardo SAPHIRA e-APD HgCdTe Array - 320 x 256 pixel, 24 µm pitch 

• Conceived for NIR WFS and fringe tracking
• Development initiated by ESO (Finger), 

later supported by University of Hawaii IfA (Hall)
• Current ROIC: ME1001 (fixed a glow source due to mask error on the ME1000)

• 32 outputs, up to 10 MPixel/s parallel readout -> 3900 Hz full frame
• Supports various reset modes (global, rolling shutter) and readout strategies 

(multiple non-destructive reads, CDS)
• No persistence when overilluminated
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Detector

Leonardo SAPHIRA e-APD HgCdTe Array - 320 x 256 pixel, 24 µm pitch 

• HgCdTe absorption layer sensitive to 0.8 … 2.5 µm, but multiplication layer 
underneath up to 3.5 µm!
• Cold short pass filters to block 2.5 … 3.5 µm by default
• Adjust filter cut-on to suppress ambient thermal background of warm FPI+ foreoptics

• What about the excess noise factor (F) vs gain (G)? 
• For a photometer, F should be unity – always fulfilled at G=1
• ESO / Finger et al.: Practically unity at gains

that are of interest for the FPI+

Finger et al. (2016)

Finger et al. (2016)
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Commercial
Camera
Package

First Light Imaging ”C-RED One” Camera (introduced 2016)
• Avoids lengthy development of cryogenic instrument and read out electronics
• SAPHIRA 24 µm pixel pitch = sweet spot for optimal sampling with existing FPI+ optics and SOFIA’s shear layer seeing
• Pulse tube cooled to 80 K = no consumables
• 25 kg total weight

• System Read Noise:
• 20 e- rms for CDS at G=1 (F=1)
• <1 e- rms for CDS at G≥20 (F~1)

• Dark current, looking at room temperature black body, 1 MHz:
• 70 e-/px/s dark current (G=1)
• 40 e-/px/s dark current (G~10, suppresses sensitivity >2.5µm)

• Optimized towards high frame rates (up to 3500 Hz single reads full frame) – more than enough
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References

Numerous C-RED One cameras commissioned and operational:

• MIRC-X at CHARA, combining the light from all six CHARA telescopes on Mt. Wilson
• SCExAO at Subaru (KERNEL project)
In preparation:
• MAORY, Multi-conjugate Adaptive Optics RelaY for ELT

More SAPHIRA arrays in the community
• WFS and fringe tracker in VLTI GRAVITY
• Lucky Imaging at NAU / Siding Springs
• IfA visitor / test instrument (Hall, Atkinson et al.)

at NASA IRTF, ROBO-AO (Mt. Palomar), 
LASSO at Kitt Peak, KPIC at Keck

• Existing user base
• Published data in the literature
• Established product

First Light Instruments
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Action Items

Action Items:

• Assessment of adding 25 kg+ on the SOFIA TA (likely requires some balancing on TA side, but no show stopper)
• SWIR reimaging optics

• Commercial lens ð easy, but limited FOV
• Custom lens to utilize full TA FOV, iterative design with manufacturer to adapt cold stop geometry

• Pulse-tube cooler’s hot side utilizes closed cycle water cooler for heat transfer –
forced air cooling is possible (demonstrated e.g. with Sunpower CryoTel cryocoolers), 
First Light open to make a change to avoid liquid on SOFIA 

FWHM at NIR wavelengths ≥ 3.2 arcsec
SWIR Lens Plate Scale FOV Procurement

50 mm f/1.2 1.60 arcsec/pixel 8.5 x 6.8 arcmin² Custom

75 mm f/1.8 1.07 arcsec/pixel 5.7 x 4.5 arcmin² COTS
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Sensitivity Analysis

Assumptions: 

• M2V type star, T=3530 K

• APD Gain = 1 ð No excess noise factor 

• Huge 1.6 arcsec pixels

• OH sky emission and atmospheric transmission
calculated by ATRAN

• Sky background totally dominates

• APD gain makes little difference

• Each optical surface treated as a thermal radiation source 

Current M3-1 SNR = 60 
(tracking limit)

SNR = 10
(detection limit)

1 s exposure J=12.9 mag J=14.9 mag

3 s exposure J=13.5 mag J=15.5 mag




