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The whirlpool galaxy (M51, NGC 5194).

* M51 is a grand-design spiral
galaxy at 8.58 Mpc.

* Interacted with the companion

ﬁlaxy NGC5195 about 400
yr ago.

e A wide range of multi-
wavelength 1images exist.

* SOFIA beam can separate the
arms from the inter-arm
regions, but cannot resolve the
armes.

* High resolution spectroscopy
can resolve them in velocity
space.
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In spiral arms Giant Molecular clouds (where star formation
takes place) can form the agglomeration of HI clouds (Classic
Picture).
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Spurs/Feathers in CO(1-0)

Filamentary structures in interarm regions
M51 HST (Scoville et al2001) | ’
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Koda et al. 2009 proposes that molecular clouds are formed
from the agglomeration of smaller molecular clouds.
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Observations of all ISM and stellar components are

needed to understand the lifecycle of the ISM.

To truly understand galactic disks, we
need a full understanding of the spiral
structure and the interrelation between
the all the gaseous and stellar
components, and their connection to
the star formation process.

Velocity resolved observations are
needed to separate the different phases
of the ISM 1n spiral arms so we can
study the upstream and downstream
parts of the spiral arms via their
different velocities.

We can study the compression of
molecular gas and the onset and effect

Kor mJ%eam

of star formation at the downstream
side of the spiral arms.
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Antenna lemperature

[CII] traces the different phases of the ISM
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[CII] can be excited by collisions with: 2

* Electrons.
* Atomic Hydrogen.
* Molecular Hydrogen (dense or diffuse).



First observation of the line-of-sight [CII]
distribution of the Milky Way (Herschel):
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The distribution of the CO-dark H, gas in the Milky Way
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Mapping [CII] in galaxies is needed.

We need [CII] maps of
entire galaxies with angular
resolution sufficient to
separate arm from inter-
arm regions and with
enough velocity resolution
to separate the phases of
the ISM across spiral arms.

SOFIA will provide for the

first time such a map.
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KAO Observations of [CII] in M51

13lpgMss (oS 558 508 455 408 358 308

R.A. (1850)

Nikola, T., et al. 2001, Ap], 561, 203
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SOFIA [CII] Mapping of M51

* Joint impact project between US and
German institutions.

* 75h of observing time over Cycle 4 and 5.

e 80% US time and 20% German time.

* upGREAT observations for resolving the
spiral arms in velocity space.

* FIFI-LS observations for sensitive
observations of [CII] in the inter-arm
regions.

* First complete maps March 2017, first
publications mid-2017.

* Expected completion, February 2018.



SOFIA [CII] Mapping of M51: Science Goals

* Study the effect of spiral arms in the
evolution of the ISM and star formation

* Separate the different ISM phases in spiral
arms (velocity space).

* Determine the physical conditions of the
line-emitting gas over different
environments.

* Image the distribution of CO-dark H, gas
across M51. In particular in the inter-arm
regions.




The SOFIA map
will be directly
compared with
theoretical model

of the ISM in M51.
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The SOFIA map
will be directly
compared with
theoretical model

of the ISM in M51.

We will test the
prediction of a
large amount of
CO-dark H, in the
inter-arm regions.

[CII] surface brightness [107® W m™2 sr™']

at t =190 Myr



FIFI-LS coverage upGREAT coverage
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SOFIA [CII] Mapping of M51: Status

* 6h (50%) of FIFI-LS allocated; 2 of the
map completed.

* 8h (13%) of upGREAT allocated; 1/10 of
the map completed.
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SOFIA/FIFI-LS Observations of
[CII] in M51

Declination (J2000)
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SOFIA/FIFI-LS Observations of
[CII] in M51
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K or mJy/beam

[CII], CO, HI Integrated Intensity Maps
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[CII], CO, HI Channel Maps
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[CII] data highlights
Blue: CO 2-1

Green: GALEX UV
Red: [Cll] 158um
(FIFI-LS)

There are spatial offsets between UV,
[CII], and CO observations.

[CII] peaks between the UV and CO

emission.
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The star formation rate

* An important parameter
used {o characterize star
formation in galaxies over Time (Gyr)
cosmic time.

« Measured in units of solar
masses per year.

* The peak of star formation
In the Universe occurred at
redshift Z=2.

Redshift

* It is important to find
tracers of star formation
that can be observed in
galaxies over a wide range
of redshifts.



[CIl] is also a tracer of the Star Formation Rate

« FUV photons from massive
stars heat the gas via
Photoelectric heating.

« [CII] is one of the main
coolants of the ISM.

« [CII] luminosity is then related
to the energy input of star
formation to the ISM.

 As aresultitis the brightest
FIR line, representing 0.1% to
1% of the total FIR continuum
(that’s a lot).

« |tis important to understand
the relation between [ClI] and

star formation in the Milk Way.
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The relationship between [CIl] and FIR in ULIRGS

* FIR from dust also
measures stellar energy

input to ISM

* L([CII]) a L(FIR) for
normal and starburst
galaxies (0.1% to 1%)

* However, luminous
infrared galaxies and
AGNSs do not obey this

relationship

and AGNs
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Why is [C lI]/IR Smaller in Active Galaxies?

Several Explanations — but cannot
explain all observations:

[C Il] is optically thick and saturated
if it arises from dense PDRs where
the 3P, level is thermalized and
does not radiate as efficiently as
dust with increasing energy input.

_]é%
N
High UV fluxes produce charged
grains which do not heat the gas o

efficiently via photoelectron ejection

A soft UV radiation field reduces the
thickness of the C* layer

X-rays ionize C* to higher ionization
states (C?* ,etc) and heat the dust,
so [CIl}J/FIR is reduced (Langer &
Pineda 2015).
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Relationship between the TIR and [CII] emission in M51

TIR Intensity
[CII]/TIR Ratio

TIR Intensity

[CII] Intensity

Blue Data points: M51 disk
Red Data Points: NGC5195 (The companion).
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The closest super
massive black hole is in
NGC 5195.

X-ray emission shock
arcs shows that gas is
being pushed away.

Closest example of AGN
feedback.

The lack of [CII] in the
companion could be an
effect of X-rays
suppressing the C*
abundance (for higher
ionization levels) or that
[ClI] is in absorption.
UpGREAT observations
will help us answer the
latter.

Companion might be an
ideal location for
studying the [CII] deficit
observed in
ultraluminos infrared
galaxies.
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W49N (corr)

The closest super
massive black hole is in
NGC 5195.

X-ray emission shock
arcs shows that gas is
being pushed away.
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Closest example of AGN
feedback.

The lack of [CII] in the
companion could be an
effect of X-rays
suppressing the C*
abundance (for higher
ionization levels) or that
[ClI] is in absorption.
UpGREAT observations
will help us answer the
latter.

Companion might be an
ideal location for
studying the [CII] deficit
observed in
ultraluminos infrared
galaxies.
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The HI Nearby
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Conclusions

* We will have a complete map of all constituents of the
ISM in the M51 grand design galaxy and its companion.

* We will study the interaction of the spiral density waves
with the ISM of M51 and will study how 1t influences the
formation ot stars.

* We clearly see the stratification of different ISM
components in space and in velocity.

* [CII] is well correlated with SFR in the disk of M51, but
not in the companion.

* First publications mid-2017, in time for senior review.



