

J. Cuzzi, D. Backman, A. Coustenis, D. Crisp, D. Cruikshank, J. Emery, J. Fortney, M. Kelley, M. Marley, F. Mills, R. Moreno, M. Mumma, G. Orton, G. Sandell, C. Woodward

Main topics:

Primitive Bodies (esp. comets, Kuiper Belt objects)

Gas giant planets

Venus and Titan atmospheres

High-level themes and objectives of planetary science

2003 Solar System Decadal Study Themes:

- 1) Formation and evolution of the planets and life on them
- 2) Evolution of volatile and organic material in the solar system
- 3) Origin and evolution of habitable worlds elsewhere in the galaxy
- 4) Fundamental processes of planetary evolution.

NASA Objectives:

- A) How did the solar system form?
- B) How do other planetary systems compare with ours?
- C) What are the locations, characteristics, and histories of biogenic compounds in our solar system?

SOFIA: An astrophysics mission with important planetary science capabilities

- Can observe at low solar elongation: objects closer to the Sun than Earth
- Can observe stellar occultations and other transient events from anywhere on Earth
- Can point at bright planets and their inner moons
- Can monitor seasonal changes over decades for slow-orbiting outer planets

Solar System Rosetta Stones: Primitive Bodies

- Comets, Asteroids, Centaurs, KBOs (Kuiper Belt Objects)
- Material condensed early in S.S. history, subsequently little- or un-altered
- Evidence from comet Wild 2 for substantial radial mixing in the solar nebula
- "Nice" model indicating primitive body dynamical families could be from mixed sources

Primitive Bodies: Comets

- SOFIA spectroscopy can address comet formation and evolution processes:
 - Water abundance, isotopic composition, and formation temperature
 - Grain mineralogy and crystallinity
 - Organic content
 - Individual comets' inhomogeneities
- * SOFIA can observe est. 60 comets over its lifetime, including several visited by spacecraft.
- * SOFIA can go anywhere on Earth to obtain the most favorable geometry, and follow comets at their most active stages, close to the Sun.

Comets: gas content

- Water is difficult to observe from the ground, but can be observed in a number of bands across SOFIA's spectral range from the near-IR into the sub-mm.
- H₂¹⁸O provides measurements of the total water mass being outgassed.
- Ortho-Para H₂ ratios in H₂O measure formation temperature (FLITECAM)
 - line structure is far narrower than Spitzer resolution (see below, left)
- HDO abundance is another indicator of formation temperature/region.

BOTTOM LINE: test theories of early solar system evolution and dynamical mixing BOTTOM LINE: information re. provenance of Earth's water and organics

Comets: solids

- High abundance of crystalline and refractory silicates in comets (STARDUST)
- Wide range of Fe/Mg ratios seen, indicating range in grain formation temperatures
- Those data can be correlated with volatile formation temperatures (from OPR, previous slide) and dynamical class of the comet (Oort Cloud, Kuiper Belt, etc.)
- Broad FORCAST spectral range is key to comet mineralogy.

BOTTOM LINE: test theories of early solar system evolution and dynamical mixing

Other Rosetta Stones: Asteroids, Centaurs, KBOs

- Occultation studies can trace atmospheric density profiles.
- Occultation studies can constrain diameters and detect multiplicity.
- Just as for comets, SOFIA can measure mineralogy, water content, and organic composition in significant sample sizes.

BOTTOM LINE: test theories of early solar system evolution and dynamical mixing BOTTOM LINE: information re. provenance of Earth's water and organics

Occultations: Atmospheres and Sizes

Pluto atmosphere, KAO, 1988

- How many other KBOs have atmospheres?
- Actual sizes and albedos are only guesses
- Many KBOs are binaries. From their sizes and masses we can infer densities. Are they rubble piles?
- BOTTOM LINE: Clues to history of outer s.s.

For small s.s. objects, SOFIA is 30X more effective at capturing occultations than either large ground-based facilities or small portable telescopes.

Figure 2 Temperature and pressure profiles of Pluto's atmosphere derived from the inversion of the P131.1 light curve. This inversion¹⁷ assumes a spherically symmetric and transparent atmosphere. It first provides the atmospheric refractivity profile, then the density profile for a given gas composition, and finally the temperature profile, assuming an ideal gas in hydrostatic equilibrium. We assume for Pluto a pure molecular nitrogen⁶ atmosphere.

Gas Giant Planets

SOFIA can observe all four gas giants across their full bolometric spectrum, with spatial resolution, studying atmospheric structure and composition:

- opacity, temperature, bulk composition, vertical upwelling
- changes over seasonal cycles
- spatial variation of trace molecules

BOTTOM LINE: giant planet formation, solar system formation

BOTTOM LINE: local comparison for analysis of extrasolar giant planets

FORCAST beam sizes, Jupiter

Gas Giant Planets, continued

- He/H, D/H, and global atomic inventory still poorly known except for Jupiter
- Spitzer data only for Neptune, and problematic (figure below)
- SOFIA brings unique EXES 6 μ m and 14-30 μ m spectroscopy (difficult or impossible to do from Earth) to bear on H₂O and hydrocarbon spatial, vertical, and temporal variations.

Venus: Why and how did its history diverge from Earth's?

- By circumstance, Venus has not been thoroughly explored with broadband, high resolution spectroscopy
 - -- Venus off-limits to Herschel; 6 µm water band inaccessible from Earth
- D/H ratio indicates Venus lost an ocean; missing piece of evidence: where's the O?
 - -- Basic atmospheric chemical network not understood.
- Observations of atmospheric composition variability (esp. SO₂, SO) can constrain possibility of ongoing intermittent volcanic(?) activity
- Stratospheric super-rotation not understood

BOTTOM LINE: Venus and Earth, comparative atmospheres [and lithospheres]

BOTTOM LINE: Information about runaway greenhouse on an Earth-like planet

BOTTOM LINE: Constraints on width of Continuously Habitable Zone around G star

Titan - an exobiological laboratory

- Heavy hydrocarbons and nitriles (EXES, CASIMIR) only hinted at by Cassini (or seen only in the laboratory) may be observed directly, vertical distribution inferred.
- SOFIA can monitor temporal variations in major atmospheric constituents such as $CH_4(87 \, \mu m, 260 \, \mu m)$, CO and HCN (below). The methane "monsoon" cycle can be studied for a full season.
- SOFIA can greatly extend and enhance limited ISO and Cassini observations of Titan and build a bridge to future spacecraft exploration of the Saturnian system.

BOTTOM LINE: Comprehensive investigation of atmospheric chemistry and dynamics in a low-temperature analog to pre-biological Earth

Summary: SOFIA enables "discovery-level" observations in planetary science

- * Observations of ...
 - Primitive bodies,
 - Gas giant planets,
 - Venus and Titan,

... address NAS and NASA highest-priority goals regarding:

- Planetary formation and evolution in our system and elsewhere
- Conditions leading to the origin of life (distribution, redistribution, and evolution of water and organics).
- * Focus on Venus provides a unique spacecraft-like contribution regarding how the atmosphere of our sister planet has diverged from our own.
- * SOFIA mission duration can span the long gap between outer planet missions, tracking short-term and seasonal variability.