

Christine A Jhabvala, Dominic J Benford, Timothy M Miller, Johannes G Staguhn, Edward J Wollack, S. Harvey Moseley

b NASA Goddard Space Flight Center, Detector Systems Branch, Greenbelt, MD, USA

NASA Goddard Space Flight Center, Observational Cosmology Laboratory, Greenbelt, MD, USA

d MEI Technologies, Greenbelt MD, USA

University of Maryland, College Park, MD, USA

Large Format Bolometer Arrays for SOFIA Instruments

Overview: We are maturing a technology for 1,280 pixel, high-filling-factor bolometer arrays for operation at wavelengths of 30 μm to ~2 mm. The goal is to develop a large-format array architecture with background-limited sensitivity, suitable for a wide range of astronomical instruments. The array consists of three individual components merged into a single, compact unit: 1) a superconducting transition edge sensor bolometer array, operating in the 100-500 mK regime; 2) quarter-wavelength resonance backshorts for high efficiency optical coupling; and 3) a Superconducting Quantum Interference Device (SQUID) multiplexer readout. A small number of design parameters can be changed to tailor the array's sensitivity and wavelength range to suit a wide variety of SOFIA applications. The goal of this program is to develop a robust bolometer array to be directly mated to a large format SQUID readout, developed by NIST, Boulder.

The Backshort Under Grid (BUG) detector is designed as a square grid of bolometers having thin support legs for thermal isolation, and an array of backshorts nested in the cavities etched through the detector wafer.

Detector Array Components

Deep RIE Grid with Interlocks for Backshort Array Insertion

1 mm Pixel on SOI Silicon

The detector consists of a thin (1 μ m) silicon body with an appropriate absorber material. The SEM image at right shows a portion of a single pixel. The dark line around the square pixel is the gap, isolating the detector from the silicon frame. The detector is suspended by long, 5 μ m wide support legs attached to the frame in corners.

Superconducting Transition Edge Sensor

A key component of the detector is the superconducting transition edge sensor. In the image at right one can clearly see the zebra stripes, which are normal-metal bars found to inhibit excess 1/f noise in the superconducting transition.

Indium Bump Bonding to Wafer-Scale Grids

Wrap Around Via's

8x8 Arrays of 1 millimeter pixels

Existing Array Formats

Image of Orion Nebula at 2 mm taken by the GISMO 8x16 array camera at the IRAM 30 meter telescope in November 2007. A Hubble image of the same sky field is shown for comparison.

GISMO Array
8x16 Arrays of 2 millimeter pixels

32x40 Arrays of 1 millimeter pixels
WAV Test Array with Membranes

