

Data Processing Status

William Vacca

Assoc. Director, Science Data Systems USRA-SOFIA

SOFIA Users Group Meeting #10 November 2016

SOFIA Pipeline Products

Defined in the Data Processing Plan for SOFIA SIs:

Level 1: raw SI data in standardized format (FITS)

Level 2: corrected for instrumental artifacts (e.g. dark current, bad pixels, etc...)

Level 3: flux calibrated (using FITS keywords; Jy)

Level 4: high-order products possibly combining multiple observations (e.g. mosaics, spectral cubes)

Pipeline Development

FLITECAM

Incorporated grism telluric correction and flux calibration into pipeline process

FORCAST

- Improved G227 and G329 grism response functions, derived from asteroids
- Developed more accurate method of implementing telluric corrections, and estimate the PWV during observations
- Minor improvements, including better centroiding, suppression of edge artifacts, better treatment of bad pixels, improved rotation and alignments

FIFI-LS

- Implemented support that allows pipeline to be run across multiple missions
- Implemented parallel processing in several steps to increase speed
- Incorporated bad pixel masks
- Incorporated telluric correction step
- Implemented flux calibration step
- Provide flux-calibrated, but not telluric-corrected cubes as separate extension
- Improved the weighting algorithm in the spatial re-sampling step

HAWC

- Received beta-version of pipeline and initial drafts of manuals from SI team; tested with on-sky data from commissioning flights
- Modified pipeline interface (Redux) and infrastructure (pipetools) to accept and process HAWC data

FIFI-LS Flux Calibration

- Derived from observations of Mars during NZ deployment, which yields responses
- Generally good to better than 20%, but accuracy at any given λ point depends on proximity to atmospheric absorption features
- Fluxes agree with PACS results to better than 10% for M82 and M51
- We are investigating claims of discrepant results
- Pipeline cuts off corrections when nominal transmission < 60%
- Calibrated spectra could be improved with accurate PWV values from WVM

GC Circumnuclear Disk

GC Circumnuclear Disk

6.7E-15

Comparison of Flux between FIFI-LS and PACS at [CII]

- Fitted line flux of [CII] at 157.741 μm
- Black cross marks center of the galaxy
- Maximum flux levels match almost perfectly
- Total fluxes in yellow circle are within 15 %
- Flux is shown in W/m² per PACS 9.4"x9.4" spaxel
- General topology matches well

+250 km/s

0 km/s

-250 km/s

Comparison of Velocity maps between FIFI-LS and PACS

- Velocity of fitted line relative to [CII] position with z = 0.000677
- Spectral Resolution of FIFI-LS is 270 km/s here
- Black contours are from PACS velocities, cross is center of M82
- Blue contours are 10% maximum line flux FIFI-LS
- General topology matches well (rotation and outflow)
- Very good match above 10% flux level
- Some issues with FIFI-LS, mostly on edges
 - Some homework on errors and bad pixels

Summary of FIFI-LS Pipeline and Data

PIPELINE

- All reduction steps have been implemented, including telluric correction, flux calibration, spectral and spatial re-sampling onto uniform grids
- Response curves have been derived for both channels and both dichroics from observations of Mars
- Level 4 products (data cube maps with multiple extensions) look very good, in general and agree with PACS data, both in spatial appearance and absolute flux
- Major development work is completed

DATA

- Reduced (Level 4) data from individual flights in OC2-F, OC3-B, OC3-K, OC4-B, and OC4-F series
- Generated Level 4 maps for targets observed on multiple missions/series
- Both sets of data have been ingested into the Archive and GIs will be notified
- Limiting factor in accuracy is telluric correction without WVM; currently the pipeline uses a standard atmospheric model, and applies ATRAN correction curves appropriate for the altitude and zenith angle of the observation

HAWC pipeline status

- DPS has received a working version of the HAWC+ pipeline
 - Pipeline developed by HAWC+ team (G. Novak et al.)
 - DPS Team flew on last two HAWC+ commissioning flights
 - Pipeline has been partially integrated into DPS infrastructure and with Redux interface
 - CRUSH software (A. Kovacs) works well for reduction of scanning imaging mode data (polarization mode not supported)
 - Chop-nod mode (primary mode for polarization observations) pipeline gives comparable results
- Next steps:
 - Design review
 - Verification & Validation
 - Finish documentation
 - Full integration into DPS infrastructure
 - Calibration
 - Instrumental polarization characterization

HAWC pipeline within Redux (M. Clarke)

12

HAWC pipeline – W3 (band C: 88 µm)

Scan Mode (CRUSH)

Chop/Nod (NodPol) Mode

Pipeline Operations

- FORCAST, EXES, FPI+:
 - OC4 processing/archiving complete to date
 - Re-processing of FORCAST data:
 - Clean up of problematic data
 - Will re-process all FORCAST grism spectra with better response curves and improved telluric correction in Winter 2016/2017
- FLITECAM:
 - OC4-J processing underway
- FIFI-LS:
 - Processed individual FIFI-LS flights from OC2-F, OC3-B/K, OC4-B/F
 FIFI-LS data to L3/L4
 - Multi-mission maps (L4) from OC2-F, OC3-B/K, and OC4-B also produced
 - All L4 data archived by 02 Nov 2016
- HAWC+:
 - Will run the pipeline on Dec data, with QA help from SI team
 - Will take over pipeline processing in Spring 2017

Cycle 4 Data Processing Status

Observing Campaign	Science Instrument	Last Flight	Baseline L3	Completed/ Expected L3
4-A	FORCAST	18-Feb-16	9-Mar-16	10-Mar-16
4-B	FIFI-LS	10-Mar-16	11-May-16	24-Jun-16
4-C	EXES	25-Mar-16	21-Apr-16	26-Apr-16
4-D	GREAT	27-May-16	22-Aug-16	29-Jul-16
4-E	GREAT (NZ)	20-Jun-16	13-Sep-16	29-Jul-16
4-F	FIFI-LS (NZ)	5-Jul-16	6-Sep-16	30-Sep-16
4-G	FORCAST (NZ)	21-Jul-16	11-Aug-16	25-Aug-16*
4-1	FORCAST	13-Oct-16	2-Nov-16	18-Oct-16
4-J	FLITECAM	21-Oct-16	10-Nov-17	
4-K	GREAT	22-Nov-16	17-Feb-17	
4-L	HAWC+	16-Dec-16	26-Apr-17**	
4-M	EXES	1-Feb-17	2-Mar-17	
4-M	EXES	1-Feb-17	2-Mar-17	

Green Yellow Red

Expected completion on Track

Expected completion less than 2 weeks after baseline Expected completion more than 2 weeks after baseline

* Approved waiver for delay

** Note: HAWC+ data processed as "best effort" for Cycle 4 because it is a newly commissioned instrument. Dates posted are an estimate.

Summary

- DPS team has been able to meet most scheduled deadlines for reductions of FSI data (aside from FIFI-LS) despite also supporting flights (serving as Inst. Sci. and reducing data inflight)
- All FIFI-LS data have been (re-)processed to L3/L4 with revised pipeline and will be ingested soon (today!)
- DPS team has taken delivery of a version of the HAWC pipeline and is integrating it into our environment/structure
- DPS team continues to make improvements to FSI pipelines
- Improvements in reduction products would result from a working WVM (especially for FIFI-LS)
- Correcting FITS Headers or improving WCS values still consumes a large fraction of time for processing data from some instruments (FIFI-LS, FLITECAM, FORCAST)

DPS Staff

Scientists:

- W. Vacca DPS Lead, pipeline development, QA, calibration scientist for FORCAST, FLITECAM, FIFI-LS, HAWC
- R. Shuping (SSI) 80%; processing and operations support
- J. Radomski QA scientist for FORCAST, (HAWC)
- S. Shenoy QA scientist for FORCAST, FLITECAM
- D. Fadda QA scientist for FIFI-LS

Software Engineers:

- M. Clarke Development Lead; Redux (pipeline interface), develops/maintains four pipelines, header checker, QA tools; testing, documentation
- K. Shabun DPS database project
- E. Omelian (NASA) IT&V lead; testing, documentation, guiding us through NASA hoops

IT:

- D. Sandel DPS hardware and ops support
- E. Proudfit DPS machine set-up and maintenance

FSI Data Processing Flow

(Shuping and Vacca)

