

HAWC+ Update

John Vaillancourt, USRA
HAWC+ Instrument Scientist

- Facility far-infrared camera for SOFIA: spectral range 40–300 μm
- Built by University of Chicago (PI: Al Harper) in collaboration with Goddard Space Flight Center
- Upgrade by JPL (PI: Darren Dowell) in collaboration with GSFC, U. Chicago and others

- Four user-selectable filters at 53, 88, 155, and 215 μm, DI/I~0.2
 - Upgrade will add 5th filter at 63μm

- Four user-selectable filters at 53, 88, 155, and 215 μm, DI/I~0.2
 - Upgrade will add 5th filter at 63μm
- Diffraction limited resolution = 5 19 arcsec in each passband

HAWC PSF measured in lab

John Vaillancourt

- Four user-selectable filters at 53, 88, 155, and 215 μm, DI/I~0.2
 - Upgrade will add 5th filter at 63μm
- Diffraction limited resolution = 5 19 arcsec in each passband
- 12×32 detector array, cooled to 0.2 K
 - Upgrade to 40×64 detector array
 - cooled to ~0.1 K
 - 10× larger FOV at each passband:

 $\sim 4-46 \text{ arcmin}^2$

- Four user-selectable filters at 53, 88, 155, and 215 µm, DI/I~0.2
 - Upgrade will add 5th filter at 63μm
- Diffraction limited resolution = 5 19 arcsec in each passband
- 12×32 detector array, cooled to 0.2 K
 - Upgrade to 40×64 detector array, cooled to ~ 0.1 K.
 - $10 \times \text{larger FOV}$ at each passband: $\sim 4 50 \text{ arcmin}^2$

• Upgrade with polarization capabilities

- Two new detector arrays, one for each polarization component
- insert rotating wave-plate and wire grid in optical path

- Facility far-infrared camera for SOFIA: spectral range 40–300 μm
- Built by University of Chicago (PI: Al Harper) in collaboration with Goddard Space Flight Center and Rochester Institute of Technology
 - Upgrade by JPL (PI: Darren Dowell) in collaboration with GSFC, U. Chicago, and others
- Four user-selectable filters at 53, 88, 155, and 215 μm, DI/I~0.2
 - Upgrade will add 5th filter at 63µm
- Diffraction limited resolution = 5 19 arcsec in each passband
- 12×32 detector array, cooled to 0.2 K
 - Upgrade to 40×64 detector array, cooled to ~ 0.1 K.
 - $10 \times \text{larger FOV}$ at each passband: $\sim 4 50 \text{ arcmin}^2$
- Upgrade with polarization capabilities
 - *Two* new detector arrays, one for each polarization component
 - insert rotating wave-plate and wire grid in optical path

HAWC+ Milestones

- HAWC successfully passed Pre-Ship review in July 2012
- HAWC+ design details for detectors and thermal spec.'s needed for 1-Kelvin stage are actively being worked (regular telecons)
 - Interface Control Document (ICD) for JPL-GSFC interface in draft form, discussions at SRR
- Systems Requirement Review (SRR): scheduled for 2013-May-8
- Successful fit-check of JPL polarimeter hardware in HAWC cryostat [2013-April-2]
- Working HAWC ship date Yerkes W JPL is 2013-May-15

HAWC+ Activities

- JPL team witnessed HAWC dewar partial disassembly during polarimeter fit-check
- Regular team telecons to discuss issues related to detector fabrication, installation, and testing
- HAWC wiki migrated to Northwestern, administered there by Nicholas Chapman (NU) and Marc Berthoud (Chicago)
- Goddard site-visit by Software team: discussions of required HAWC+ software (flight & lab) with respect to existing tools for HAWC, GISMO, TES/MCE.
- SOFIA Telescope polarization requirements. Pasquale Temi (NASA Lead) supported by Vaillancourt, Dotson, Dowell, Novak

HAWC+ Optical Path

John Vaillancourt

Polarimeter Fit-Check

Confirmed that new polarimeter hardware fits in existing HAWC cryostat

HAWC Pupil Wheel

HAWC+ Pupil Wheel

John Vaillancourt

Polarization Requirements

There currently exist no polarization requirements on the SOFIA telescope. Proposed requirements (not yet accepted by PMB):

- Require: telescope-induced pol'n $P_{TA} \le 4\%$ at $\lambda = 40 300 \mu m$
- Require: Systematic uncertainty in measurement of P_{TA} , < 0.3% over most of 8 arcmin FOV
- Goal: telescope-induced pol'n $P_{TA} \le 1\%$ at $\lambda > 3 \mu m$
- Ø Requirements should allow systematic uncertainty of $P_{\rm sys}$ < 0.6% for astronomical measurements, as specified in HAWC+ instrument proposal. Spec.'s above were achieved on the KAO at 60 & 100 μ m
- \emptyset Goal would yield P_{sys} < 0.3% for HAWC+, also allow future polarization science at shorter wavelengths

