

SOFIA Non-Sidereal Pointing and Tracking

John Rasmussen

Critical Realm Corporation

SOFIA Users Group

Nov 18, 2013

Executive Summary

- Complex changes to MCCS and the TA TRC and TASCU are underway to achieve high velocity non-sidereal pointing and tracking.
- The design provides <u>a simple</u> interface to the operator and/or observer to request such pointing and tracking.
- Prototype developments appear to achieve relatively high computational accuracy
- MCCS/TASim interaction is robust and mature

- Dr Michael Gross, USRA algorithm development, TASim Lead Developer
- John Cooper, USRA algorithm development and mathematical modeling
- Dr. Elizabeth Moore, USRA User Interface development and ISD Manager
- Dr. Holger Jakob, DSI TA Lead
- John Rasmussen, Critical Realm Corp, algorithm development, Scenario/algorithm lead
- Chris Luk, Wes Patterson, Todd Jenkins, L3
 Communications Software Development Soft Users Group November 2013

- A simplimed presentation of 51, 174, and MCCS command and housekeeping relationships.
- The MCCS PIS XFORMS processes convert observer cooks dinates to the Alacoordinates

Non-Sidereal Tracking Use Cases Analysis

Track vs. Target Type	Track Object is Sidereal	Track Object is Non-Sidereal
Target is Sidereal	"Typical" – e.g. observe stellar nebula using nearby track star	Is there a case here? Seems contrived (i.e. not necessary) but, contrived case may help in verification since target location (track point) is well known
Target is Non- Sidereal	Lowell Observatory method – use track stars to guide observations of a non- sidereal target	Observe an asteroid/ comet/planet that could be used to guide as well

Design Approach

- 1. Non-sidereal observing utilizes geocentric ephemeris files in JPL format (first phase --- osculating elements will be prioritized for a later phase)
- 2. MCCS interpolates ephemeris for the given time and converts geocentric ephemeris to topocentric coordinates using current SOFIA longitude, latitude and altitude
- 3. MCCS will compute TA velocities of Tracker Area of Interests (AOIs) and Fine Drive controller and provide velocities to the TA Tracker and TASCU
- 4. TA will propagate velocities and change guide objectto-target offset as needed during tracking
- 5. Subsequent nods, dithers, tweaks, or pointing in SI coordinates leave velocity in place

- From some external Patae (Low JPL Horizons)
- Create ephemeris file for object to observe and track object (if non-sidereal)
- Use stepsize per required accuracy (i.e. moons will change velocity)
 - Recommend 15min to avoid significant error in apparent velocity determination
- Transfer to SOFIA
- Create positions and go
- coord.position name=jupiter (ephemeris={xyz file})
- ta_pos.goto pos=jupiter
- New command to associate ephemeris with an AOI coord.aoi_create

Geosynchronous Satellite (August Line Ops)

JPEG1

JPEG2

Not a Science test case; just a validation of MCCS and TA coordination

- After pointing with MCCS satellite, TA was in inertial mode with all stars moving in focal plane except "one"
- Pointing was generated from an approximation of satellite's position (i.e. not precisely generated from a known orbit vector or authoritative source akin to JPL Horizons).
- See Doug Hoffman's movie at:

https://wiki.sofia.usra.edu/twiki/pub/EngDataAnalysis/S3postDeployRawData/GeoStationary.mov

Stable results at velocities much higher than Science use case (15"/sec vs 1"/sec)

Juno Observation

This observation was completely *unplanned*.

- While performing other tests, observed via Stellarium that Juno was approaching the azimuth that SOFIA was observing during the line operation
- Quickly generated a JPL Horizon's ephemeris file since we had internet connectivity
- Transferred file to MCCS via MD
- Created "Juno" position
- Pointed to MCCS "Juno" position and placed image

Juno; dist: 1.7 AU, mag: 5.25

GUI/PIS coordination of interfaces presents very low impact to existing operations concepts

Initial pointing

AOI around asteroid

1999 CF9; dist: 0.06AU, mag, mag: 14.8, velocity ~800"/hr

Good results on fast Near Earth Object in absence of tracking

Integration Lab Results

Overlays of Jovian moons (before TASim supported the rendering of such satellites)

- Position creation is very slightly slower than sidereal position creation while the MCCS reads the file
- Multiple non-sidereal positions can be created.
- Areas of Interest can be created from such positions.

Integration Lab Results

Guiding on a star in FFI while observing a ~15"/sec object

Place holder for a separate slide of size 35M with an embedded movie

- Next Steps
 Develop, unit-test TA Tracker software
- Integrate MCCS engineering build with actual TA system
- Verify MCCS and TA systems
 - Majority of MCCS verification in Lab with TASim
 - Allows eval during simulated flight at various locations, velocities
 - Allows use of arbitrary non-sidereal objects
 - MCCS-TA interface verification in Hangar with TA
 - Real system to real system for very new command interfaces
 - High Level MCCS validation on sky in a line operation
 - Slow non-sidereal objects
 - Simulated non-sidereal objects from sidereal "ephemeris"
- Verify and validate Observatory capability
 - Repeat and validates behavior in a line operation and in flight
 - Utilizes data analysis team who perform astrometric analysis of if Mages to restablish pointing