

First Generation Science Instruments

Science Instrument	Type*	Developing Institution	Principal Investigator	Instrument Description
FORCAST	FSI	Cornell University	Herter	Simultaneous Dual Channel Imaging and Grism Spectroscopy (5-25 μ m & 25-40 μ m)
GREAT	PSI	Max Planck Institute, Bonn	Güsten	High Resolution (R > 10 ⁶) Heterodyne Spectrometer (1.6-1.9 THz; 2.4-2.7 THz; 4.7 THz)
HIPO	SSI	Lowell Observatory	Dunham	Visible Light High-Speed Camera (0.3-1.1 μm)
FLITECAM	FSI	UCLA	McLean	Near Infrared Imaging and Grism Spectroscopy, (1-5.5 μ m); Can be used in combination with HIPO
FIFI-LS	PSI FSI	University of Stuttgart	Krabbe	Dual Channel Integral Field Grating Spectrometer (42-110 μ m; 100-210 μ m)
EXES	PSI	UC Davis	Richter	High Resolution (R > 10^5) Echelle Spectrometer (5-28 μ m)
HAWC W	FSI	University of Chicago III	Harper 🖫 Dowell	High-Angular Resolution Wide-Band Camera with 4 Channels (50 μ m, 100 μ m, 160 μ m, 200 μ m)

Science Instrument	Status	
FORCAST	FORCAST Acceptance Review for imaging modes completed. Software Acceptance Oct 31; New grism 4 installed and tested	
GREAT	UpGREAT (an array heterodyne) to be commissioned in 2015	
HIPO	Commissioning review completed in May 2014	
FLITECAM	Near Infrared Imaging and Grism Spectroscopy, (1-5.5 μ m); Can be used in combination with HIPO; All Commissioning Flights complete. Long-wavelength glint resolved	
FIFI-LS	All Commissioning Flights complete, performed GO science flights	
EXES	Phase 1 Commissioning Complete, will complete commissioning flights in February	
HAWC M HAWC+		

HIPO Status

- 1 Pluto occultation flight conducted June
 2011
- 4 engineering flights conducted in June and December 2011
- 4 engineering flights conducted in tandem with FLITECAM (aka FLIPO) in October 2011
- 3 engineering/commissioning flights conducted in January and February 2013
- Observed exoplanet transit during the October 2013 FLITECAM commissioning campaign
- Conducted 6 flights of observations in February 2014, including observations of NGC 2024, an exoplanet transit observation and multiple observations of the supernova SN2014J

FORCAST Status

3 observatory characterization flights conducted in 2010

- 13 flights conducted during Early
 Science in 2010 and 2011
- 6 commissioning flights conducted in April, May, and June 2013
- 3 Cycle 1 science flights conducted in June and July 2013
- 5 science flights conducted in September 2013
- Acceptance review for imaging modes conducted March 2014
- Cycle 2 science flights conducted in April 2014
- Next installation expected January 2014
- Grism 4 installed and tested in lab—shows some residual stray light. Will be tested during 2015 line ops and flights in parallel with GO observations

Observations

SOFIA/FORCAST Galactic Center observations conducted during Basic Science flights 63 and 64 on June 4, 2011 and 8, 2011, respectively.

SOFIA/FORCAST images at 19.7 (blue), 31.5 (green), 37.1 (red) μm

G4 Grism double spectrum

Problem: Multiple infrared diffraction patterns observed for single point source (star) when Grism 4 flight device is used in FORCAST.

Hypothesis: Multiple orders with more power in the brightest few orders is consistent with a blazed pattern orthogonal to the desired groove pattern

Grism mounted in FORCAST; transmission infrared cross-dispersed spectrum of point source

Grism mounted on optical bench; transmission visible light (HeNe) G4-only spectrum of point source

Microscope photograph of Grism 4 groove pattern illuminated with white light

- Grooves appear to have a periodic change in depth or shape with a period of ~0.7 μm
- Difference in intensity of reflected light by the anomalous pattern indicates a blazed pattern (also consistent with the observed multiple orders in the infrared spectrum)

Conclusion: the grism groove profiles have inconsistent depth/shape along the full length of the grooves

G4, 4 mm beam

G4, 4 mm beam

SCI-US-PRE-SE04-2032

GREAT Status

- 18 flights during Early Science in 2011
- Cycle 1 science observations
 - 4 flights in April and July 2013
 - 9 flights from New Zealand in July 2013
- L (~ 1.3, 1.5, 1.9 THz) and M (~ 2.5,
 2.7 THz) channel commissioning
 completed on April and July 2013 flights
- Conducted two flights in February 2014
- Cycle 2 observations conducted in May 2014
- H channel (4.7 THz) flown May 2014
- upGREAT commissioning in 2015, with multipixel heterodyne arrays:
 - 1.9-2.5 THz at two polarizations
 - 4.7 THz

SOFIA/GREAT discovery of interstellar mercapto radicals (SH)

Its 1.383 THz ground state transition lies in the gap between Herschel/HIFI Bands 5 and 6.

SH is a key hydride, for which astronomical data was conspicuously missing until now.

Its²presence suggests a "warm chemistry", driven by shocks or turbulent dissipation, that can enable endothermic formation paths.

Eight neutral diatomic hydrides have now been detected in the ISM:

H₂ (Carruthers 1970) CH (Swings & Rosenfeld 1937) NH (Meyer & Roth 1991) 2001)

SiH (tentative; Schilke et al.

QUICK-LOOK data reduction: notifully calibrated

Herbst, Pineau des Forêts and the

GREAT Team (2011)

OH (Weinreb 1963)

SH (SOFIA/

FLITECAM Status

- Fully comissioned in ground-based observations at Lick observatory
- 4 engineering flights conducted in tandem with HIPO (FLIPO) in October 2011
- May 2013 line operations completed successfully
- Instrument currently at UCLA
- 2 commissioning flights with HIPO (FLIPO) in October 2013
- 3 commissioning flights conducted in November 2013
- 6 flights conducted in February 2014, including observations of exoplanet transit and supernova SN2014J

SN2014J

In Flight **Sept. 2013**: J, H, K

Bands L to R: J. H, K

Files: Sept-27-2013-0088.a.fits Scale: 0-1000

Sept-27-2013-0089.a.fits Exp.: 1s

Sept-27-2013-0091.a.fits Source: HD 213136

In Flight **Feb. 2014**: J, H, K

Bands L to R: J. H, K

Files: Feb-13-2014-0333.a.fits

Feb-13-2014-0340.a.fits

Feb-13-2014-0349.a.fits

Scale: 0-3000

Exp.: 1s x 5 coadds

Source: SA 108-475

FIFI-LS

FIFI LS: Field Imaging Far Infrared Line Spectrometer

Science: Integral field spectroscopy in the far-infrared; Galaxy evolution; galactic halos; dwarf galaxies Dual Channel imaging spectrometer (R~1700)

Blue channel: 42-110 microns

Red channel: 110-210 microns

16 x 25 pixel Ge:Ga detector array (each

channel)

FIFI-LS Status

- Hardware integrated
- FIFI-LS offered as shared-risk in SOFIA
 Cycle 2 call for proposals
- Pre-ship review completed October
 2013
- Commissioning completed in February and April 2014

High-resolution spectra

of molecules (H₂, NH₄, H₂O) blocked from ground observations.

Molecular clouds, protoplanetary disks, interstellar shocks, planetary atmospheres

SOFIA

EXES: Echelon-cross
Echelle
Spectrograph

- 1: 5 28.5 mm
- Detector: 256²
 pixel Si:As BiB
- Platescale: 0.4"/ pixel
- Three resolving modes:
 - DI: 10⁵ for I < 10
 mm
 - -10^6 for l > 10 mm
 - 3000 for echellon bypass

EXES Status

- Hardware integrated
- Demonstrated at Mauna Kea on IRTF
- EXES offered as shared-risk in SOFIA Cycle 2 call for proposals
- Pre-ship review in January 2014
- Commissioning part 1 conducted in April 2014
- Commissioning completing February2015

HAWC

HAWC: High-resolution Airborne Wideband

Camera

Wavelength range: 40-300 microns in 4 bands

Band pixel size FOV

53 microns 2.25 arcsec 27 x 72 arcsec

89 microns 3.5 arcsec 42 x 112 arcsec

155 microns 6.0 arcsec 72 x 192 arcsec

215 microns 8.0 arcsec 96 x 256 arcsec

Detectors: 12 x 32 "pop-up" bolometer array

HAWC Science: high angular-resolution imaging in the far-infrared; Star formation; protoplanetary disks interstellar cloud structure; gas and dust production in evolved stars; active galactic nuclei; High-redshift galaxies

HAWC+ Upgrade

- 1st Generation HAWC completed pre-ship review in July 2012
- 2nd Generation HAWC+ upgrade funded in March 2013
- HAWC shipped from Yerkes
 Observatory to JPL in June 2013
- HAWC+ upgrade will add polarimetry capabilit new detectors to HAWC
- Preliminary design review (PDR) completed in September 2013, CDR completed in January 2014
- Detector Sub-system TIM conducted September 2014
- Delivery and commissioning Summer 2015

SOFIA Hans J. Kärcher, et al. 23 June 2014 • 2:50 - 3:10 PM Matthew J. Richter, et al. 24 June 2014 • 4:10 - 4:30 PM **Evolution of the SOFIA tracking system** The HAWC+ upgrade program: wide-field far-Norbert Fiebig, et al. infrared imaging and polarimetry with SOFIA 24 June 2014 • 2:20 - 2:40 PM Charles D. Dowell, et al. 22 June 2014 • 6:00 - 8:00 PM **Commissioning and first science results of FIFI-LS** Alfred Krabbe, et al. The integrated motion measurement simulation 22 June 2014 • 4:50 - 5:10 PM for **SOFIA** Prashant A. Kaswekar, Benjamin Greiner, Jörg Wagner FIFI-LS observation planning and data reduction. 25 June 2014 • 6:00 - 8:00 PM Aaron Bryant, et al. FIFI-LS: the facility far-infrared spectrometer for 22 June 2014 • 6:00 - 8:00 PM **SOFIA** Randolf Klein, et al **FLITECAM: early commissioning results** 22 June 2014 • 6:00 - 8:00 PM Sarah E. Logsdon et al. 22 June 2014 • 6:00 - 8:00 PM Implementation of an active vibration damping system for the SOFIA telescope assembly Precise angular positioning at 6K: the FIFI-LS grating assembly Paul C. Janzen, Paul J. Keas Felix Rebell, et al. 27 June 2014 • 4:50 - 5:10 PM 22 June 2014 • 6:00 - 8:00 PM Upgrade of the SOFIA target acquisition and **HIPO** in-flight performance improvements tracking cameras Edward W. Dunham, et al. Jürgen Wolf, et al 22 June 2014 • 4:30 - 4:50 PM 23 June 2014 • 4:40 - 5:00 PM Boresight calibration of FIFI-LS: in theory, in the lab and on sky General investigator science program on SOFIA Sebastian Colditz et al. Erick T. Young, et al. 22 June 2014 • 6:00 - 8:00 PM 23 June 2014 • 2:00 - 2:30 PM Environmental testing for new SOFIA flight Users Group Meeting 10/20/14

SOFIA pointing history

First flights of the EXES science instrument on

hardware

Generic SOFIA technology demonstration platform

- cryocoolers provide 4K bench
- optical plate populated by Technology
 Demonstration teams, installed into cryostat.
- Minimal airworthiness changes (outer shell remains unchanged)
- Integrated with SOFIA using standard SI procedures, etc
- Cryostat design can be made available to 3rd generation instrument developers as an example or starting point

Challenges to SOFIA technology demonstration:

- Long timescale
- Difficult airworthiness process
- High cost considering the limited # of flights (compared with FSIs)
- Difficult for smaller labs to take on