

Effects of Stray Light on SOFIA Science Data

Patrick Waddell, Eric Becklin, Bill Vacca, Ryan Hamilton, Maureen Savage

SUG May 2016

Extra Background seen with FLITECAM

- During the Pluto Occultation Practice Flight, an extra background at 2.2 µm was noted; strongly dependent on telescope elevation (stronger at lower tel els)
 - Extra background had been seen in earlier FLITECAM commissioning observations, but not fully characterized.
 - Extra background could be easily seen at 35 degrees and varied as the plane tipped slightly ~1 deg; disappeared by ~45 deg
 - Pupil images reveal two bright regions
 - Blackbody fits to the excess emission give T ~ 500-700 K
 - Most likely explanation: emission from engine cone (dominant source) and plume directly striking/scattering off upper edge of primary and reflecting off spiders
 - Reflection off aft spider is brightest region in pupil images above ~20 deg elevations

FLIPO: 2.2 micron Image of Sky

1.8 micron Background vs Elevation

FLIPO: 2.2 micron Pupil Image

Current Spiders as "shiny" poles in IR

View from outside looking in

View from inside looking out

Geometry

Engine 1 Outboard cone on door side

Current unfinished state of Spiders:

Quasi-rounded surfaces with attach points

- Lower edge & surfaces uncoated
- Broadband; "IR mirrors"
- Interface design: to accept Spider Covers
- Uneven → has "facets"

Notes on SOFIA Stray Light

Night view of PM and Spiders with bright illumination and camera located at engine #1 tail cone, TA at roughly 20 degrees.

In-flight wing flex (est. 0.6 m) not simulated – more of PM would be illuminated

Cavity view from Engine 1 Cone

TA a two elevations

NASA

Stray Light Images

Comparing images with Breault Research Org. stray light studies (5-7µm),1998

Spiders/Stray Light at 2.2 µm

Variable on time scales of few minutes, due to aircraft motions

Plume emission

Shuttle Carrier Aircraft (Dinger et. al.)

Simulation (Bao & Buijtenen; TUDelft)

Effects on Science Instruments

- Some line emission from plume might be detected by spectroscopic instruments working in the 2 to 15 micron region (FLITECAM, FORCAST and EXES). No known measurements.
- Continuum emission from engine cone dominates thermal background only at $\lambda \le 5-8 \mu m$
- Nod subtraction should remove both to a large degree (for small nods), since emission is additive; however, extra background will increase the noise, and background is variable due to changes in aircraft roll
- Black baffles on spiders should decrease stray light flux by orders of magnitude.

FORCAST Pupil images at 6.4

μm

No extra background seen; No change with tel elevation

Raw 211 elev

Raw 40Y elev

Raw 57Y elev

Spider Covers to Reduce Stray Light

J-Black Spider profile

Spiders/Stray Light Issues

Spider Covers as baffles

Spider Covers as baffles – fabrication schedule (2016)

- Jan Measure as-built Spiders and compare with dwgs.
- Feb Fabricate Spider Cover fabrication jig and Spider Cover Mock-up (300 mm section)
- Apr Test fit Mock-up
- May Acquire all materials & parts
- Jun/Jul Fabricate CFRP components, load test, assemble & distribute reports
- Jul/Aug Apply J-Black, further testing
- Aug Parts & paperwork delivered for test fit and integration

Backup

Engine Plume and Cone (Dinger etal)

Figure II-1. Sketch of P&W JT9D-7 Jet Engine and Exhaus

Theoretical Plume emissivity

