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ABSTRACT  

The Infrared Array Camera (IRAC) is now the only science instrument in operation on the Spitzer Space Telescope. The 
3.6 and 4.5 µm channels are temperature-stabilized at ~28.7K, and the sensitivity of IRAC is nearly identical to what it 
was in the cryogenic mission. The instrument point response function (PRF) is a set of values from which one can 
determine the point spread function (PSF) for a source at any position in the field, and is dependent on the optical 
characteristics of the telescope and instrument as well as the detector sampling and pixel response. These data are 
necessary when performing PSF-fitting photometry of sources, for deconvolving an IRAC image, subtracting out a 
bright source in a field, or for estimating the flux of a source that saturates the detector. Since the telescope and 
instrument are operating at a higher temperature in the post-cryogenic mission, we re-derive the PRFs for IRAC from 
measurements obtained after the warm mission temperature set point and detector biases were finalized and compare 
them to the 3.6 and 4.5 µm PRFs determined during the cryogenic mission to assess any changes. 
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1. INTRODUCTION  

The Spitzer Space Telescope1 was launched on August 25, 2003, and its cryogenic mission lasted until May 15, 2009, 
when its supply of liquid helium was exhausted. After a brief recalibration and checkout phase2, Spitzer began its “Warm 
Mission” operational phase3 in late July 2009. At its new temperature equilibrium just below 30K, the 3.6 and 4.5 µm 
channels of the Infrared Array Camera (IRAC)4, which utilize InSb detectors, can continue to operate at high sensitivity 
and low dark current5. The observatory has been operating nominally and obtaining science data since July 2009, and in 
April 2012 we passed the milestone of over 1000 days (and counting!) of continuous IRAC operation. 

The Spitzer point spread function (PSF) is undersampled by IRAC and in the 3.6 and 4.5 µm channels, there is a 
significant variation in sensitivity across the face of each pixel. In order to account for these effects when performing 
PSF-fitting photometry or subtracting point sources from images, Point Response Functions (PRFs) were developed for 
IRAC6. A PRF is a table (not an image, though for convenience it is stored as a 2D FITS image file) which combines the 
information on the PSF, the detector sampling, and the intra-pixel sensitivity variation. By sampling this table at regular 
intervals corresponding to fractional detector pixel steps, an estimate of the detector point source response can be 
obtained for a source centered at any given sub-pixel position. 

PRFs have several astronomical applications when analyzing Spitzer/IRAC data. For example, if one is interested in 
studying faint companions to bright stars, one can use the PRF to subtract the bright star from the field to better locate 
and photometer the faint companions7. The PRF can also be used to perform PRF-fitting photometry to determine the 
flux of sources, which is especially useful in crowded fields where many sources overlap and simple aperture 
photometry is not possible. The PRFs can also be used to perform photometry on sources that are saturated in the IRAC 
frames by fitting the extended wings of the PSF to a standard star8. A well-determined high signal-to-noise PRF is 
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To produce the core portion of the PRF, 300 HDR observations of a calibration star were obtained during three separate 
epochs (and different roll angles). Each observation consisted of short exposures (0.6 sec/1.2 sec) and long exposures 
(12 sec/30 sec). The PRFs were generated by first combining short-exposure frames and long-exposure frames 
separately. The images were aligned in each epoch in array coordinates, and the individual epochs were then aligned in 
reference to the calibration star, allowing us to reject all of the background objects which appeared at different positions 
in each epoch. The short frames enabled the cores to be constructed without a saturation problem, while the long 
exposures allowed the construction of a higher signal-to-noise PRF in the wings out to 15 arcseconds. The assembly 
required the replacement of any saturated areas in the long-exposure frames with unsaturated data from the same pixel 
area of the short-exposure frames. It also required the replacement of a few pixels in the long-exposure frames by the 
corresponding pixels in the short-exposure frames to mitigate the non-linear bandwidth effect in channels 3 and 4. The 
“stitching” of the two components of the PRF was completed using a 1/r masking algorithm requiring a percentage of 
each frame to be added together over an annulus two IRAC pixels in width just outside the saturated area. Each epoch 
was treated separately, and then all three epochs were aligned relative only to the PRF star in array coordinates and a 
median was taken to remove background stars. 

Observations of the stars Vega, epsilon Eridani, Fomalhaut, epsilon Indi, Sirius, SAO 17718, and BD +68 1022 were 
used in the construction of the extended portion of the PRF7. Each star was observed with a sequence of 12 sec IRAC 
full frames, using a 12-point Reuleaux dither pattern with repeats to obtain the required total integration time. The stars 
were typically observed for 20 – 60 minutes during each epoch. The images were aligned, rescaled to the observation of 
Vega, and then averaged together with a sigma-clipping algorithm to reject background stars. The core PRFs were 
aligned and rescaled to the extended PRFs by matching their overlapping area. The alignment was done at best to an 
accuracy of ~0.1 arcsec. The rescaling was made by forcing the cores to have the same flux density, that of Vega, within 
a 10 native IRAC pixel radius aperture. The stitching was made using a mask with a smooth 1/r transition zone, 2.4 
arcsec wide, between the core (contributing where the extended PRF data were missing due to saturation cutoff), and the 
extended PRF. The merged extended PRFs were then cropped to a final 5.1 × 5.1 arcmin size, and a pedestal level was 
removed in order to have a surface brightness as close as possible to zero in the corners of the images.  

The cryogenic PRFs are shown in Figure 1. There are several features common to all bands. Near the core, several 
diffraction rings are visible. There are six diffraction spikes caused by the support vanes of the telescope’s secondary 
mirror. The spikes each split into two parts as they increase in radius from the central source. Ghost images from the 
IRAC filters appear to the upper left and right of the core in the 3.6 and 4.5 μm images, respectively. Between the 
diffraction spikes there are more irregular-shaped light and dark bands extending outward from the core. The data for the 
cryogenic PRFs are available on the Spitzer Science Center website6.  

 

3. WARM MISSION PRFS 

In the Spitzer warm mission, several of the observatory components have warmer temperatures than during the cryogenic 
mission. The IRAC body and optics warmed from 1.2 K to ~28 K. The arrays previously operated near 15K and are now 
stabilized at 28.7 K. The telescope mirrors and supports were in the 5 – 12 K range during the cryogenic mission and are 
now near 25 K. Based on our knowledge of its materials and properties, the telescope focus and optical performance of 
IRAC was not expected to change under the warmer conditions in any major way. However, it was anticipated that some 
features of PRF could change because of potential changes in the alignment of the optics and/or changes in the array 
characteristics at the warmer temperatures. Therefore we performed a set of measurements in the warm mission to re-
derive the PRFs for use in reducing IRAC warm mission data. 

3.1 Extended PRF 

We used warm mission observations of several stars to derive the extended PRFs in a manner similar to the cryogenic 
PRFs. The data were from the Spitzer program “Search for Planetary Mass Companions of Nearby Young Stars” 
(Program ID 80071, P.I. M. Marengo). The stars were all observed with an Astronomical Observation Request (AOR) 
that specified a 12 second full-array frame time, using a 36-point small Reuleaux triangle dither pattern, and 4 repeats at 
each position, for 144 12s frames on-source at both 3.6 and 4.5 µm at each epoch, with the exception of Altair, that was 
observed with 6 second frames, 8 repeats. At this frame time, the stars were generally saturated to different levels in the 
core but this allowed a high S/N measurement of the extended PRF. Each star was observed in two different epochs (and 
field rotations). The processing steps were the following: 
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