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Figure 15. 0.3–10 µm transmission spectrum of HD-189733b including all the high-precision measurements available in the literature (Hubble/
STIS–ACS–WFC3–NICMOS, Spitzer/IRAC from space, IRTF/SpeX from the ground). The data points observed simultaneously are plotted with the same color.
We stress that combining multiepoch data sets is a risky operation: instrumental systematics and stellar activity may prevent altogether an accurate measurement of
the absolute transit depth. Black plot: simulated atmospheric spectrum with water vapor, methane, carbon dioxide, and hazes/clouds. Orange plot: modeled spectrum
with water vapor, methane, and different haze/cloud contributions. Violet plot: simulated atmospheric spectrum including only water vapor and hazes/clouds. Light
blue plot: cloud-free spectrum with water vapor. Note that we plot the newest reanalysis of the STIS, ACS, and WFC3 data sets made by the same authors (Pont et al.
2013). For the original analyses please refer to Pont et al. (2008), Sing et al. (2011), Huitson et al. (2012), and Gibson et al. (2012a). Figure 16 shows a zoom in on
the 1.4–2.5 µm range.
(A color version of this figure is available in the online journal.)

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

0.0232

0.0234

0.0236

0.0238

0.024

0.0242

0.0244

0.0246

0.0248

0.025

A
bs

or
pt

io
n

Wavelength [micron]

 

 

Swain et al. 2008
Sing et al. 2009
Gibson et al. 2012b
Gibson et al. 2012a
Waldmann et al. 2013
This work
Telluric point

Figure 16. A zoom in of all of the measurements available for the H and K bands.
(A color version of this figure is available in the online journal.)

2. Once converged, there is little improvement in terms of
error-bars by increasing X since the common signal will
not diminish and the independent noise component has
already converged to near-zero rms. This is in contrast to the
more familiar central limit theorem when taking arithmetic
means.
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Primary	
  transit	
  

•  Transmission	
  spectroscopy	
  

•  Molecular	
  absorbers,	
  clouds	
  

•  Transit	
  depth	
  <	
  3%	
  

•  Photometric	
  precision	
  ~10-­‐4	
  

Secondary	
  eclipse	
  

•  Emission	
  spectroscopy	
  

•  Thermal	
  radiaJon,	
  albedo	
  

•  Eclipse	
  depth	
  <	
  0.3%	
  

•  Photometric	
  precision	
  ~10-­‐4	
  

Beyond	
  the	
  na2ve	
  precision	
  of	
  current	
  instruments	
  
	
  
Data	
  detrending	
  is	
  needed	
  to	
  reduce	
  instrumental	
  systemaJcs	
  



Spitzer	
  Space	
  Telescope	
  



Spitzer	
  pixel-­‐phase	
  effect	
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Fig. 2.— Top panel: Representation of one simulated frame onto the focal plane. Bot-

tom panels: simulated time series associated to selected individual pixels (blue and red),

a centered 5⇥5 array (green), and a centered 9⇥9 array (black). The centroid is assumed

oscillating in the direction indicated by the double-headed arrow, with a sinusoidal pattern

(sin1, see Tab. 2).
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Fig. 2.— Top panel: Representation of one simulated frame onto the focal plane. Bot-

tom panels: simulated time series associated to selected individual pixels (blue and red),

a centered 5⇥5 array (green), and a centered 9⇥9 array (black). The centroid is assumed

oscillating in the direction indicated by the double-headed arrow, with a sinusoidal pattern

(sin1, see Tab. 2).
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Parametric	
  detrending	
  
The Astrophysical Journal, 731:16 (12pp), 2011 April 10 Beaulieu et al.

Figure A1. Raw photometric data for 3.6 and 4.5 µm obtained with IRAC. Each sub-panel has the same structure showing from top to bottom: the variation of the
centroid position in X, in Y, and lastly the predicted baseline flux using pixel-phase correction. The lowest panel of each plot is the primary transit and overplotted the
50-point median-stack smoothing. They provide a synoptic view of the systematic trends present in IRAC primary transit data.
(A color version of this figure is available in the online journal.)
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•  Measured	
  flux	
  is	
  
correlated	
  with	
  
centroid	
  coordinates;	
  

•  Detrending	
  by	
  division	
  
for	
  a	
  polynomial	
  
funcJon	
  of	
  centroid	
  
coordinates.	
  

•  Which	
  degree	
  of	
  the	
  
polynomial?	
  

•  How	
  to	
  es2mate	
  
centroid?	
  

•  Is	
  this	
  the	
  only	
  effect?	
  



Newer	
  detrending	
  techniques	
  for	
  Spitzer	
  

•  SpaJal	
  weighJng	
  funcJons	
  (e.g.	
  Ballard	
  et	
  al.	
  2010,	
  
Cowan	
  et	
  al.	
  2012,	
  Lewis	
  et	
  al.	
  2013)	
  

•  Bliss	
  mapping	
  (Stevenson	
  et	
  al.	
  2012,	
  b)	
  
•  Independent	
  Component	
  Analysis	
  (Morello	
  et	
  al.	
  
2014,	
  2015,	
  Morello	
  2015)	
  

•  Pixel-­‐level	
  decorrelaJon	
  method	
  (Deming	
  et	
  al.	
  
2014)	
  

•  Gaussian	
  Processes	
  (Gibson	
  et	
  al.	
  2012,	
  Evans	
  et	
  al.	
  
2015)	
  

	
  



Independent	
  Component	
  Analysis	
  

•  Blind	
  Source	
  Separa2on	
  technique,	
  i.e.	
  
no	
  prior	
  knowledge	
  of	
  the	
  instrument	
  
systemaJcs	
  

•  Applicable	
  in	
  a	
  general	
  context,	
  not	
  just	
  IRAC	
  
light-­‐curves	
  	
  



ICA	
  in	
  astrophysics	
  
•  ICA	
  has	
  been	
  used	
  to	
  separate	
  the	
  cosmic	
  microwave	
  
background	
  or	
  signatures	
  from	
  distant	
  galaxies	
  from	
  
their	
  galacJc	
  foregrounds	
  and	
  instrumental	
  noise	
  
(e.g.	
  SJvoli	
  et	
  al.	
  2006,	
  Maino	
  et	
  al.	
  2002,	
  2007,	
  
Aumont	
  &	
  Macías-­‐Pérez	
  2007,	
  Wang	
  et	
  al.	
  2010).	
  
	
  

•  ICA	
  has	
  been	
  used	
  to	
  detrend	
  exoplanetary	
  light-­‐
curves	
  taken	
  with	
  different	
  instruments	
  (Waldmann	
  
et	
  al.	
  2013,	
  Waldmann	
  2012,	
  2014).	
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ICA:	
  mathema2cal	
  model	
  

X	
  =	
  AS	
  
observaJons	
   signals	
  

mixing	
  	
  matrix	
  

S	
  =	
  A-­‐1X	
  
UNKNOWN	
  



ICA:	
  sta2s2cs	
  (1)	
  

Since Vx has uncorrelated components, one could hope Vx = s, i.e. the
problem is already solved. However, it does not happen. In fact, a generic
orthogonal transformation of the vector signal Vx has still uncorrelated com-
ponents. This process does not allow to find which one has indipendent com-
ponents. (Hyvarinen, Karhunen, and Oja 2001)
Nevertheless, whitening is a useful preprocessing step, because the matrix
VA is orthogonal. This allows to restrict the search for the mixing matrix
in the space of orthogonal matrices, reducing the number of free parameters
from n2 to n(n � 1)/2. Being whitening a much simpler process than ICA,
this is computationally advantageous. (Hyvarinen, Karhunen, and Oja 2001)

D.2 ICA estimators

In this section I will show the main estimators used to perform ICA. Essen-
tially, they are mathematically equivalent, di↵ering in statistical properties
such as consistency, asymptotic variance, robustness and in computational
simplicity and e�ciency.

D.3 Estimators

D.3.1 Entropy

Entropy is the basic concept of Information Theory. For a random vector
y = (y

1

, y
2

, ..., yn) it is defined as:

H(y) = �
Z

p(y) log p(y) dy for continuous variable (D.8)

H(y) = �
X

k

p(yk) log p(yk) for discrete variable (D.9)

Note that yk = (yk11, yk22, ..., yknn) in D.9.
It is the optimal measure of the uncertainty associated with a random vari-
able. In fact, in the discrete case:

• H is maximum if all the possible exits for the variables are equiprobable;

• H is minimum, that is zero, if there is only one exit with probability 1
and the others with probability 0.

While, in the continuous case:

• H is small, that is negative with big absolute value, if p(y) is concen-
trated in a strict interval, assuming high values.
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Shannon	
  entropy	
  

It	
  is	
  the	
  staJsJcal	
  measure	
  of	
  uncertainty	
  
associated	
  with	
  a	
  random	
  variable.	
  

D.3.2 Mutual information

Mutual information measures the informations that members of a set of ran-
dom variables have on the other random variables in the set. For a random
vector y = (y

1

, y
2

, ..., yn) it is defined by

I(y
1

, y
2

, ..., yn) =
nX

i=1

H(yi)�H(y) (D.10)

where H is the entropy function.
It is intuitive that maximization of indipendence is equivalent to minimiza-
tion of mutual information. Using Equation 2.4, mutual information for
source signals results:

I(s
1

, s
2

, ..., sn) =
X

i

H(si)�H(x)� log|det(W)| (D.11)

If the yi are constrained to be uncorrelated and of unit variance, det(W) is
constant, so that the last term in Equation D.11 has no e↵ect in finding the
minimum of mutual information.
Mutual information is not really used because its complexity. Other estima-
tors are all related to mutual information.

D.3.3 Negentropy

Among all the distributions with fixed mean and covariance matrix, the
gaussian distribution has the maximum entropy. This property suggests to
define negentropy as an estimator of nongaussianity:

J(y) = H(ygauss)�H(y) (D.12)

where ygauss is a random gaussian vector with the same covariance matrix of
y. Negentropy is zero if y is gaussian, positive in other cases.
Thus minimization of mutual information equivals maximization of the sum
of the nongaussianities of the estimated components.
The entropy of a gaussian random vector can be evaluated as

H(ygauss) =
1

2
log |det(C)|+ n

2
[1 + log(2⇡)] (D.13)

where C is the covariance matrix and n is the dimension of y.
An important property of negentropy is scale-invariance, which justify the
ambiguity in the amplitudes of indipendent components extracted via ICA,
announced in 2.10.
Negentropy is hard computing; several approximations are used.
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mutual	
  informaJon	
  

maximum	
  independence	
  =	
  minimum	
  mutual	
  informaJon	
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ICA:	
  sta2s2cs	
  (2)	
  
Among	
  all	
  the	
  distribuJons	
  with	
  fixed	
  mean	
  and	
  covariance,	
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  gaussian	
  distribuJon	
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  entropy.	
  

D.3.2 Mutual information

Mutual information measures the informations that members of a set of ran-
dom variables have on the other random variables in the set. For a random
vector y = (y

1

, y
2

, ..., yn) it is defined by

I(y
1

, y
2

, ..., yn) =
nX

i=1

H(yi)�H(y) (D.10)

where H is the entropy function.
It is intuitive that maximization of indipendence is equivalent to minimiza-
tion of mutual information. Using Equation 2.4, mutual information for
source signals results:

I(s
1

, s
2

, ..., sn) =
X

i

H(si)�H(x)� log|det(W)| (D.11)

If the yi are constrained to be uncorrelated and of unit variance, det(W) is
constant, so that the last term in Equation D.11 has no e↵ect in finding the
minimum of mutual information.
Mutual information is not really used because its complexity. Other estima-
tors are all related to mutual information.

D.3.3 Negentropy

Among all the distributions with fixed mean and covariance matrix, the
gaussian distribution has the maximum entropy. This property suggests to
define negentropy as an estimator of nongaussianity:

J(y) = H(ygauss)�H(y) (D.12)

where ygauss is a random gaussian vector with the same covariance matrix of
y. Negentropy is zero if y is gaussian, positive in other cases.
Thus minimization of mutual information equivals maximization of the sum
of the nongaussianities of the estimated components.
The entropy of a gaussian random vector can be evaluated as

H(ygauss) =
1

2
log |det(C)|+ n

2
[1 + log(2⇡)] (D.13)

where C is the covariance matrix and n is the dimension of y.
An important property of negentropy is scale-invariance, which justify the
ambiguity in the amplitudes of indipendent components extracted via ICA,
announced in 2.10.
Negentropy is hard computing; several approximations are used.

70

negentropy	
  

•  Mutual	
  informaJon	
  and	
  negentropy	
  are	
  hard	
  compuJng.	
  
	
  

•  AlternaJvely,	
  we	
  can	
  maximize	
  non-­‐gaussianity	
  of	
  the	
  
source	
  signals,	
  through	
  different	
  esJmators.	
  

	
  

D.3.4 Kurtosis

Kurtosis is a fourth order function of the moments of the pdf. In the zero-
mean case it is defined by

kurt(y) = E(y4)� 3E(y2)2 (D.14)

where E means the expectation value of its argument, or in the normalized
form by

˜kurt(y) =
E(y4)

E(y2)2
� 3 (D.15)

Gaussian random variables have zero kurtosis, those with positive kurtosis
are called supergaussian, and are more peaked, those with negative kurtosis
are called subgaussian, and are flatter. There exist also nongaussian random
variables with zero kurtosis, but they are very rare. For these reasons kur-
tosis, or rather its absolute value, is used as a measure of nongaussianity.
Being y

1

and y
2

two scalar random variables and ↵ a numerical constant, the
following linearity properties are valid:

kurt(y
1

+ y
2

) = kurt(y
1

) + kurt(y
2

) (D.16)

kurt(↵y
1

) = ↵4kurt(y
1

) (D.17)

The major advantage of kurtosis is its semplicity, but it is not an optimal
estimator, because its range, i.e. [�2,+1[, is not symmetric. In addition, it
is very sensible to outlayers.

D.3.5 Temporal correlations

Independent signals must be uncorrelated, that is:

E{si(t)sTj (t)} = ⇢i�ij (D.18)

Uncorrelatedness is not a su�cient condition for independence. Two signals
are independent if also time-lagged covariances are zero:

E{si(t+ ⌧)sTj (t)} = ⇢i(⌧)�ij (D.19)

This means that time-lagged covariance matrices of independent source sig-
nals are diagonal.
Using Equation 2.4:

E{Wxi(t+ ⌧)xT
j (t)W

T} = WE{xi(t+ ⌧)xT
j (t)}WT = ⇢i(⌧)�ij (D.20)
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kurtosis	
  

Being W = A�1 and x signal whitened, Equation D.20 becomes:

ATE{xi(t+ ⌧)xT
j (t)}A = ⇢i(⌧)�ij (D.21)

The mixing matrix is an approximate joint diagonalizator of several time-
lagged covariance matrices.
A measure of deviation from diagonality for a matrix M is:

off(M) =
X

i 6=j

|Mij|2 (D.22)

D.4 ICA algorithms

As expected in light of the discussion in the previous section, there are many
algorithms that implement the ICA technique. I will not present all the exist-
ing algorithms, but only the ones used in my project and their propedeutics,
pointing out the di↵erence in terms of performance. It will be assumed to
work with whitened data.

D.4.1 Negentropy approximations: contrast functions

Hyvarinen in 1998 developed a class of approximations for negentropy (Hy-
varinen 1999):

J(y) ⇡
pX

i=1

ki[E{Gi(y)}� E{Gi(⌫)}]2 (D.23)

where ki are some positive constants, and ⌫ is a random gaussian variable of
zero mean and unit variance, the variable y is assumed to be of zero mean
and unit variance, and the functions Gi are non quadratic. The Gi functions
are called “contrast functions”. Often, only one contrast function is used, so
that Equation D.23 becomes:

J(y) / [E{G(y)}� E{G(⌫)}]2 (D.24)

The choice of the contrast functions is important to optimize the perfor-
mances of the algorithm. This is discussed in the following paragraphs for
specific algorithms.

D.4.2 E�ciency and Cramér-Rao Lower Bound

If the source signals si and the mixing matrix A are known, which tipically
only happens in tests, it is possible to evaluate the quality of the separation,

72

approximated	
  negentropy	
  



Mul2ple	
  observa2ons	
  
•  Spectroscopically	
  resolved	
  light-­‐curve,	
  i.e.	
  simultaneous	
  

observaJons	
  in	
  different	
  wavelength	
  ranges	
  (e.g.	
  Waldmann	
  
et	
  al.	
  2013,	
  Waldmann	
  2012,	
  2014)	
  

•  MulJple	
  photometric	
  observaJons	
  of	
  the	
  same	
  target	
  (e.g.	
  
Waldmann	
  2012)	
  

•  Individual	
  pixel-­‐Jmes	
  series	
  (e.g.	
  Morello	
  et	
  al.	
  2014,	
  2015,	
  
Morello	
  2015)	
  

Figure 3.1: Left: representation of point source spread in more than one
pixel; Middle: representation of a gaussian fit on the PRF; Right: the corre-
spondance between the image on the detector and the intensity profile of the
fitted PRF; it is shown how the global PRF is the sum of the contributions
from individual pixels.

If the position of the star on the detector is stable, as in many Spitzer ob-
servations, including the ones I analyzed, there are pixels detecting the as-
trophysical signals at any time. My idea is to use simultaneous lightcurves
of individual pixels (in the following pixel-lightcurve), that is the temporal
series of lectures from single pixels, as mixed signals from which to extract
the independent components. In an ideal case, i.e. a star with a gaussian pdf
with a fixed centroid on the detector and all pixels equivalent, each pixel-
lightcurve is a scaled version of the global lightcurve. In the ideal case it is
true that each pixel-lightcurve would contain the same source signals, but
with the same relative mixing coe�cients, in other words the rows of the
mixing matrix A (see Eq. 2.3) would be all proportional to the first row, so
that A is a not invertible matrix with rank(A) = 1, therefore no separations
would be possible. However the telescope pointing is subject to jitter and
the source moves slightly with respect to the pixels during the whole obser-
vation. I found, through a few simulations, that introducing a fluctuation of
the centroid with a semiamplitude of a few tenths of the pixel length, that
is of the order of centroid fluctuations in Spitzer lightcurves that I analyze
in this Thesis, it is possible to separate several components. If confirmed
this fact, it would be quite useful and interesting, because centroid fluctua-
tions are present in every observation, and they should be crucial to perform
astrophysical signals decompositions, while up to now they have been con-
sidered as a disturbance. I suppose also that slight di↵erences in the pixels
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Conclusions	
  
•  Transit/eclipse	
  spectroscopy	
  can	
  be	
  used	
  to	
  understand	
  
exoplanets	
  (composiJon,	
  climate,	
  history);	
  

•  Data	
  detrending	
  methods	
  are	
  crucial	
  to	
  achieve	
  the	
  
target	
  precision,	
  i.e.	
  ~10-­‐4	
  ;	
  

•  Pixel-­‐ICA	
  is	
  a	
  blind	
  signal-­‐source	
  separa2on	
  method	
  to	
  
detrend	
  systemaJcs	
  from	
  a	
  single	
  photometric	
  
observa2on;	
  	
  

•  Consistent	
  transit	
  parameter	
  results	
  from	
  mulJple	
  
observaJons;	
  

•  High	
  performance	
  over	
  simulated	
  datasets	
  of	
  primary	
  
transits	
  with	
  instrument	
  systemaJcs	
  and	
  noise.	
  



Future	
  projects	
  

•  Reanalysis	
  of	
  archive	
  datasets;	
  
•  Improving	
  detrending	
  techniques	
  through	
  
instrument	
  simulaJons;	
  

•  OpJmizing	
  the	
  method	
  for	
  the	
  case	
  of	
  
secondary	
  eclipses	
  (low	
  signal-­‐to-­‐noise,	
  
amplitude	
  of	
  the	
  astrophysical	
  signal	
  smaller	
  
than	
  instrument	
  systemaJcs);	
  

•  Data	
  analysis	
  from	
  different	
  instruments,	
  e.g.	
  
Spitzer/IRS,	
  other	
  Spitzer/IRAC	
  passbands.	
  



Interference-­‐to-­‐Signal	
  Ra2o	
  
•  If	
  the	
  source	
  signals	
  and	
  the	
  true	
  mixing	
  matrix	
  are	
  known,	
  it	
  

is	
  possible	
  to	
  test	
  the	
  goodness	
  of	
  the	
  separaJon:	
  

	
  
•  In	
  case	
  of	
  perfect	
  demixing,	
  the	
  normalized	
  gain	
  matrix	
  is	
  the	
  

idenJty.	
  

•  For	
  certain	
  algorithms,	
  it	
  is	
  possible	
  to	
  calculate	
  asymptoJcal	
  
expressions	
  for	
  the	
  ISR	
  matrix,	
  which	
  are	
  independent	
  on	
  the	
  
mixing	
  matrix.	
  

via the so called gain matrix G :

G = ŴA (D.25)

where Ŵ is the estimated demixing matrix. In case of perfect demixing, the
gain matrix G is a diagonal matrix, with the amplitudes of the estimated
source signals as diagonal elements. These are meaningless, as discussed in
2.2.3. This makes preferable to refer to the normalized gain matrix:

G̃ = ŴAD
1
2 (D.26)

where D is the diagonal matrix of the variances of the extracted source
signals. In case of perfect demixing, the normalized gain matrix G̃ is the
identity.
A nonzero term out of diagonal indicates the residual contamination of a
signal by another. The Interference-to-Signal Ratio (ISR) matrix is defined
by:

ISRij =
G̃

2

ij

G̃
2

ii

⇡ G̃
2

ij (D.27)

The interference-to-signal ratio for the ith estimated component is:

isri =

Pn
j=1,j 6=i G̃

2

ij

G̃
2

ii

(D.28)

A separation is perfect if the inferferences are all zeros, i.e. ISR is the identity
matrix. This is not feasible. There exists a theoretical lower limit for the
elements of ISR matrix, that is the Cramér Rao Lower Bound CRLB:

ISRij � CRLBij (D.29)

It is a general theorem of Information Theory, that limits inferiorly the vari-
ance of an unbiased estimator. A source separation is better as its ISR
elements are closer to the Cramér Rao Lower Bound.

D.4.3 FastICA

FastICA for one component

It consist in finding a weight vector w such that the projection wTx is maxi-
mally nongaussian, as measured by an approximation of negentropy via D.24,
with the conventional constraint ||w|| = 1. I denote with g the derivative of
G.
The FastICA algorithm for one unit is the following (Hyvarinen and Oja
2000):
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where ISR is the so-called Interference-to-Signal-Ratio matrix, o
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non-transit-components, m is their number, �
ntc�fit

is the standard deviation of residuals

from the theoretical raw light-curve, out of the transit, f is the normalising factor for

the detrended light-curve. The sum on the left takes into account the precision of the

components extracted by the algorithm; �
ntc�fit

indicates how well the linear combination of

components approximates the out-of-transit. The MULTICOMBI code, i.e. the algorithm

that we use for the ICA transformation, provides two Interference-to-Signal-Ratio matrices,

ISREF and ISRWA, associated to the sub-algorithms EFICA and WASOBI, respectively.

Two approaches has been suggested to derive a single Interference-to-Signal-Ratio matrix:
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ISREF + ISRWA
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(3)

ISR
i,j

= min

�
ISREF

i,j

, ISRWA

i,j

�
(4)

Eq. 3 is a worst-case estimate, while Eq. 4 takes into account the outperforming separation

capabilities of MULTICOMBI compared to EFICA and WASOBI. We adopt Eq. 4

throughout this paper, but results obtained with both options are reported in Tab. 7, 8, 9,

and 10. In most cases the di↵erences are negligible.

– 8 –

parameters are the mean values of the chains, and the zero-order error bars, �
par,0, are

their standard deviations. The zero-order error bars only accounts for the scatter in the

detrended light-curve; they must be increased by a factor that includes the uncertainties

due to the detrending process:

�

par

= �

par,0

s
�

2
0 + �

2
ICA

�

2
0

(1)

where �

par

is the final parameter error bar, �0 is the square root of the likelihood’s variance

(approximately equal to the standard deviation of residuals), and �

ICA

is a term associated

to the detrending process. Morello et al. (2014, 2015) suggest the following formula for

�

ICA

:

�

2
ICA

= f

2

 
X

j

o

2
j

ISR
j

+ �

2
ntc�fit

!
(2)

where ISR is the so-called Interference-to-Signal-Ratio matrix, o
j

are the coe�cients of the

non-transit-components, m is their number, �
ntc�fit

is the standard deviation of residuals

from the theoretical raw light-curve, out of the transit, f is the normalising factor for

the detrended light-curve. The sum on the left takes into account the precision of the

components extracted by the algorithm; �
ntc�fit

indicates how well the linear combination of

components approximates the out-of-transit. The MULTICOMBI code, i.e. the algorithm

that we use for the ICA transformation, provides two Interference-to-Signal-Ratio matrices,

ISREF and ISRWA, associated to the sub-algorithms EFICA and WASOBI, respectively.

Two approaches has been suggested to derive a single Interference-to-Signal-Ratio matrix:

ISR =
ISREF + ISRWA

2
(3)

ISR
i,j

= min

�
ISREF

i,j

, ISRWA

i,j

�
(4)

Eq. 3 is a worst-case estimate, while Eq. 4 takes into account the outperforming separation

capabilities of MULTICOMBI compared to EFICA and WASOBI. We adopt Eq. 4

throughout this paper, but results obtained with both options are reported in Tab. 7, 8, 9,

and 10. In most cases the di↵erences are negligible.

MULTICOMBI:	
  

– 8 –

parameters are the mean values of the chains, and the zero-order error bars, �
par,0, are

their standard deviations. The zero-order error bars only accounts for the scatter in the

detrended light-curve; they must be increased by a factor that includes the uncertainties

due to the detrending process:

�

par

= �

par,0

s
�

2
0 + �

2
ICA

�

2
0

(1)

where �

par

is the final parameter error bar, �0 is the square root of the likelihood’s variance

(approximately equal to the standard deviation of residuals), and �

ICA

is a term associated

to the detrending process. Morello et al. (2014, 2015) suggest the following formula for

�

ICA

:

�

2
ICA

= f

2

 
X

j

o

2
j

ISR
j

+ �

2
ntc�fit

!
(2)

where ISR is the so-called Interference-to-Signal-Ratio matrix, o
j

are the coe�cients of the

non-transit-components, m is their number, �
ntc�fit

is the standard deviation of residuals

from the theoretical raw light-curve, out of the transit, f is the normalising factor for

the detrended light-curve. The sum on the left takes into account the precision of the

components extracted by the algorithm; �
ntc�fit

indicates how well the linear combination of

components approximates the out-of-transit. The MULTICOMBI code, i.e. the algorithm
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Eq. 3 is a worst-case estimate, while Eq. 4 takes into account the outperforming separation

capabilities of MULTICOMBI compared to EFICA and WASOBI. We adopt Eq. 4

throughout this paper, but results obtained with both options are reported in Tab. 7, 8, 9,

and 10. In most cases the di↵erences are negligible.
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